Molecular Mechanisms of Organelle-based Metabolic Signaling
基于细胞器的代谢信号传导的分子机制
基本信息
- 批准号:10623647
- 负责人:
- 金额:$ 58.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Cell physiologyCellsCellular MembraneCholesterolCommunicationComplexCyclic AMP-Dependent Protein KinasesCytoplasmDedicationsDiseaseEndoplasmic ReticulumFRAP1 geneFunctional disorderGoalsGrowthGrowth FactorHealthHomeostasisLipidsLysosomesMalignant NeoplasmsMeasuresMediatingMembraneMetabolicMetabolic DiseasesMolecularNeimann-Pick&aposs Disease Type CNerve DegenerationNeurodegenerative DisordersNeuronsNon-Insulin-Dependent Diabetes MellitusNutrientNutrient availabilityOrganellesOrganismOxygenPathogenicityPathway interactionsPhosphotransferasesPhysiologicalProliferatingProtein KinaseRegulationRoleSignal PathwaySignal TransductionSiteSterolsSurfaceTimedetection of nutrientdriving forcehuman diseasenovel therapeutic interventionprogramsrecruitresponsesensor
项目摘要
ABSTRACT
The molecular mechanisms through which cells sense nutrients remain largely unknown, but their
elucidation is key to our understanding of metabolic regulation both in normal and disease states. At the center
of nutrient sensing and growth regulation is an ancient protein kinase known as the mechanistic Target of
Rapamycin Complex 1 (mTORC1). In response to the combined action of metabolic inputs such as nutrients,
growth factors, energy and oxygen, mTORC1 translocates from the cytoplasm to the surface of lysosomes,
where it becomes activated. Accumulating evidence indicates that aberrant mTORC1 activation at the lysosome
could be a driving force in diseases ranging from cancer to type-2 diabetes to neurodegeneration. Thus, a deep
mechanistic understanding of how mTORC1 is activated and then inactivated in response to nutrients could point
the way to novel therapeutic strategies in these diseases. My lab has made important contributions to the
understanding of mTORC1 pathway organization, and how its function is integrated with the many activities of
the lysosome. In particular, we have identified a dedicated signaling pathway via which cholesterol, an important
building block for cellular membranes, promotes mTORC1 recruitment to the lysosome and activation of its
downstream programs. We have uncovered membrane contact sites between lysosomes and the endoplasmic
reticulum as key nodes where mTORC1 activation by cholesterol occurs, thus implicating inter-organelle
communication as an important aspect of mTORC1 regulation. Furthermore, we found that excess mTORC1
signaling, caused by cholesterol accumulation in the lysosome, drives cellular dysfunction and could be a driving
force in a neurodegenerative and metabolic disease, Niemann-Pick type C (NPC).
These discoveries directly lead to deep questions on the organization of cellular nutrient sensing, which
are at the core of the current MIRA proposal. One key challenge is to elucidate the mechanisms and physiological
roles of lipid-dependent mTORC1 regulation, specifically whether dedicated cholesterol sensors exist in the
lysosomal membrane, and how they couple the abundance of sterol molecules to mTORC1 activation and to
overall metabolic regulation at the cell and organism level. Based on our finding that cholesterol sensing by
mTORC1 involves physical communication between the lysosome and the ER, another major goal of the
proposal is to delineate the machinery that mediates communication and metabolite exchange between the
lysosome and the ER, and how this machinery participates in regulation of mTORC1 as well as another major
metabolic kinase, protein kinase A. Finally, the pathogenic role of dysregulated mTORC1 in NPC, and the ability
of mTORC1 inhibition to restore several parameters of NPC cell function, strongly support mTORC1 as a prime
target in neurodegenerative disease. We will thus determine how lysosomal mTORC1 controls neuronal cell
homeostasis, and how dysregulated mTORC1 signaling contributes to neuronal degeneration. Together, these
studies will shed light on fundamental principles of metabolic organization in health and disease states.
摘要
细胞感知营养的分子机制在很大程度上仍不清楚,但它们的
阐明是我们理解正常和疾病状态下代谢调节的关键。在中心
是一种古老的蛋白激酶,被称为
雷帕霉素复合体1(MTORC1)。作为对营养等代谢输入的综合作用的反应,
生长因子、能量和氧气,mTORC1从细胞质转移到溶酶体表面,
在那里它会被激活。越来越多的证据表明,溶酶体上mTORC1的异常激活
可能是从癌症到2型糖尿病再到神经退化等疾病的驱动力。因此,一个很深的
对mTORC1如何被激活然后失活对营养的反应的机械理解可能指向
这些疾病的新治疗策略的途径。我的实验室为
了解mTORC1途径的组织,以及它的功能如何与许多活动相结合
溶酶体。特别是,我们已经确定了一条专门的信号通路,通过它,胆固醇是一种重要的
细胞膜的构建块,促进mTORC1募集到溶酶体并激活其
下游项目。我们发现了溶酶体和内质网之间的膜接触部位
网状结构是胆固醇激活mTORC1的关键节点,因此涉及细胞器间
沟通作为mTORC1监管的一个重要方面。此外,我们还发现,过量的mTORC1
由溶酶体中的胆固醇积累引起的信号会导致细胞功能障碍,可能是一种驱动力
神经退行性和代谢性疾病中的力量,Niemann-Pick C型(NPC)。
这些发现直接导致了关于细胞营养传感组织的深刻问题,这是
是目前米拉提案的核心。一个关键的挑战是阐明其机制和生理
脂质依赖的mTORC1调节的作用,特别是是否存在专门的胆固醇传感器在
溶酶体膜,以及它们如何将丰富的甾醇分子偶联到mTORC1的激活和
在细胞和生物体水平上的整体代谢调节。根据我们的发现,通过
MTORC1涉及溶酶体和内质网之间的物理通信,这是
建议是描述调解沟通和代谢物交换的机制
溶酶体和内质网,以及这一机制如何参与mTORC1以及另一主要
代谢激酶,蛋白激酶A。最后,mTORC1在鼻咽癌中的致病作用,以及
对mTORC1的抑制能恢复鼻咽癌细胞功能的几个参数,强烈支持mTORC1作为素数
神经退行性疾病的靶点。因此我们将确定溶酶体mTORC1是如何控制神经细胞的
动态平衡,以及失调的mTORC1信号如何导致神经元退化。加在一起,这些
研究将阐明健康和疾病状态下新陈代谢组织的基本原则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Zoncu其他文献
Roberto Zoncu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roberto Zoncu', 18)}}的其他基金
Spatio-temporal regulation of mTORC1 signaling in normal and disease states
正常和疾病状态下 mTORC1 信号传导的时空调节
- 批准号:
10408711 - 财政年份:2019
- 资助金额:
$ 58.76万 - 项目类别:
Molecular mechanisms for lipid sensing by mTORC1
mTORC1 脂质传感的分子机制
- 批准号:
10393506 - 财政年份:2019
- 资助金额:
$ 58.76万 - 项目类别:
Spatio-temporal regulation of mTORC1 signaling in normal and disease states
正常和疾病状态下 mTORC1 信号传导的时空调节
- 批准号:
10174962 - 财政年份:2019
- 资助金额:
$ 58.76万 - 项目类别:
ENGINEERING ORGANELLE FUNCTION TO REWIRE CANCER CELL METABOLISM
改造细胞器功能以重新连接癌细胞代谢
- 批准号:
8756590 - 财政年份:2014
- 资助金额:
$ 58.76万 - 项目类别:
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 58.76万 - 项目类别:
Studentship
根での内外的傷害の初動対処となる新規の傷害防衛戦略"Cellsロック"
“细胞锁”是一种新的损伤防御策略,从根源上对内伤和外伤进行初步反应。
- 批准号:
24KJ2131 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SBIR Phase I: Industrial-Scale Technology for Drug Development in Mature Human Fat Cells
SBIR 第一阶段:成熟人类脂肪细胞药物开发的工业规模技术
- 批准号:
2322443 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Discovery Projects
Dissecting the heterogeniety of human tissue-resident memory T cells
剖析人体组织驻留记忆 T 细胞的异质性
- 批准号:
DE240101101 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Discovery Early Career Researcher Award
Roles of immune cells derived from clonal hematopoiesis in B-cell lymphomas
克隆造血来源的免疫细胞在 B 细胞淋巴瘤中的作用
- 批准号:
24K19213 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MARVEL-ous Extracellular vesicles carry RXLR effectors into host plant cells
MARVEL-ous 细胞外囊泡携带 RXLR 效应子进入宿主植物细胞
- 批准号:
BB/Y002067/1 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Research Grant
Interplay of the extracellular matrix and immune cells in lung pathology: key role for chitinase-like proteins
肺病理学中细胞外基质和免疫细胞的相互作用:几丁质酶样蛋白的关键作用
- 批准号:
MR/Y003683/1 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Research Grant