Harmonizing Multiple Data Sources And Psychological Autopsy To Characterize Suicides Among Opioid-Related Deaths

协调多个数据源和心理尸检来描述阿片类药物相关死亡中的自杀特征

基本信息

  • 批准号:
    10623253
  • 负责人:
  • 金额:
    $ 19.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary/ Abstract This Mentored Patient-Oriented Research Career Development Award is designed to provide the applicant with the advanced training necessary to establish an independent program of research in the epidemiology of overdose mortality and suicide. A comprehensive training program is proposed, combining formal coursework, mentoring, and hands-on training experiences designed to develop expertise in data linkage/ harmonization, latent class modeling (LCA), qualitative psychological autopsy (PA) and mixed methods research. As overdose deaths increase, they continue to be treated as accidents resulting from changes in opioid use. However, epidemiologic research suggests that many of these deaths are likely suicides, This has important implications for appropriately targeting interventions. We will measure the magnitude of this misclassification of manner of death (MOD; intentionality) and identify factors that may guide medical examiners to more accurately classify suicide decedents. We hypothesize that approximately one third of opioid related deaths of undetermined manner are truly suicides, and that LCA can distinguish subgroups of decedents with greater likelihood of suicidal intent. We will use PA in a subset of previously undetermined intent decedents to test predictive ability of empirically-derived classes and characterize the diverse paths to overdose. We propose to analyze all opioid overdose deaths in Maryland from 2006-2019 (n=13,861) using demographic, social, and clinical data which we will link from the Maryland Suicide Data Warehouse to mortality data from the Office of the Chief Medical Examiner (OCME). First, taking one third of this sample, we will compare cases classified as suicidal (n=115) from accidental (n=756) and undetermined intent (n=3,748) using a three-way multinomial logistic regression. Next, variables found to be most salient comparators will be used in LCA of the remaining cases, agnostic of OCME MOD class (n=9,286). Comparing the empirically derived classes with the OCME designations, we will assess the proportion of designated suicides and accidents in each class. Finally, from each of these latent classes, we will select 40 decedents designated by OCME as ‘undetermined manner’ to be further examined by multiple collateral interview PA, to corroborate these latent classes. By generalizing findings from LCA and PA, more accurate suicide rate estimates can be made. Findings would impact future MOD designation and potentially, how prevention interventions target accidental overdoses and suicides. Training and mentorship plans will leave the candidate well positioned to become an independent physician- epidemiologist, able to utilize both qualitative and quantitative methods for the validation of large linked data sets describing the interrelated suicide and overdose crises. His long term career goals include the elucidation of mechanisms of self injury mortality, the use of mixed methods for the generation and investigation of novel hypotheses regarding pathways to suicide, and the ability to translate these findings into suicide prevention.
项目摘要/摘要 这个受到指导的以患者为导向的研究职业发展奖旨在为申请人提供 有必要的高级培训,以建立独立研究计划的流行病学计划 过量的死亡率和自杀。提出了一项全面的培训计划,结合了正式课程, 指导和动手培训经验旨在发展数据链接/协调方面的专业知识, 潜在类建模(LCA),定性心理尸检(PA)和混合方法研究。 随着过量死亡的增加,由于阿片类药物使用变化而导致的事故继续被视为事故。 但是,流行病学研究表明,其中许多死亡可能是自杀,这很重要 适当针对干预措施的影响。我们将测量这种错误分类的大小 死亡方式(mod;故意性)并确定可能引导医学检查员更多的因素 准确地分类自杀。我们假设大约三分之一的阿片类药物相关死亡的死亡 不确定的方式是真正的自杀,LCA可以区分决定的亚组 自杀意图的可能性。我们将在先前未定的意图的子集中使用PA决定测试 经验衍生的阶级的预测能力并表征了潜水员过量的道路。 我们建议使用人口统计学,2006 - 2019年从2006 - 2019年分析马里兰州的所有阿片类药物过量死亡 我们将从马里兰州自杀数据仓库链接到死亡率数据的社交和临床数据 首席医学检查员办公室(OCME)。首先,以此样本的三分之一,我们将比较案例 偶然(n = 756)和未定的意图(n = 3,748)归类为自杀(n = 115) 多项式逻辑回归。接下来,发现最显着的比较器将在LCA的LCA中使用 其余情况,OCME Mod类别的不可知论(n = 9,286)。将经验得出的类与 OCME名称,我们将评估每个班级指定自杀和事故的比例。最后, 从这些潜在阶级中的每一个中,我们将选择OCME指定为“不确定的方式”的40个死者 要通过多个附带访谈PA进一步检查,以证实这些潜在阶级。通过概括 LCA和PA的发现可以进行更准确的自杀率估计。调查结果将影响未来 MOD指定,并可能是预防干预措施如何针对意外过量服用和自杀。 培训和心态计划将使候选人处于良好状态,成为一名独立的医生 - 流行病学家可以利用定性和定量方法来验证大型链接数据 描述相互关联的自杀和过量危机的集合。他的长期职业目标包括阐明 自我伤害死亡率的机制,使用混合方法来生成和研究新颖 关于自杀途径的假设以及将这些发现转化为预防自杀的能力。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suicide and the Solitary Life: Differential Risks of Living Alone Across Sociodemographic Groups.
自杀和独居生活:不同社会人口群体独居的风险不同。
Long gun suicides in the state of Maryland following the firearm safety act of 2013.
  • DOI:
    10.1111/sltb.12919
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Pan, Isabella;Zinko, James;Weedn, Victor;Nestadt, Paul S.
  • 通讯作者:
    Nestadt, Paul S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Sasha Nestadt其他文献

Paul Sasha Nestadt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Sasha Nestadt', 18)}}的其他基金

Harmonizing Multiple Data Sources And Psychological Autopsy To Characterize Suicides Among Opioid-Related Deaths
协调多个数据源和心理尸检来描述阿片类药物相关死亡中的自杀特征
  • 批准号:
    10426651
  • 财政年份:
    2022
  • 资助金额:
    $ 19.74万
  • 项目类别:

相似海外基金

Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
  • 批准号:
    10827155
  • 财政年份:
    2023
  • 资助金额:
    $ 19.74万
  • 项目类别:
Human Isogenic Organoid Models of Genetic Forms of Autism to Identify Convergent and Divergent Pathomechanisms in Autism
自闭症遗传形式的人类同基因类器官模型,用于识别自闭症趋同和发散的病理机制
  • 批准号:
    10736309
  • 财政年份:
    2023
  • 资助金额:
    $ 19.74万
  • 项目类别:
Mechanistic evaluation of mast cell agonists combined with TLR, NOD and STING agonists.
肥大细胞激动剂联合 TLR、NOD 和 STING 激动剂的机制评估。
  • 批准号:
    10657847
  • 财政年份:
    2023
  • 资助金额:
    $ 19.74万
  • 项目类别:
Evaluating prostate cancer phenotype and genotype classification from circulating tumor DNA as biomarkers for predicting treatment outcomes
根据循环肿瘤 DNA 评估前列腺癌表型和基因型分类作为预测治疗结果的生物标志物
  • 批准号:
    10804464
  • 财政年份:
    2023
  • 资助金额:
    $ 19.74万
  • 项目类别:
Validation of Lens Beta-Amyloid as a Novel Biomarker for Early Detection of Alzheimer's Disease at the Boston University Alzheimer's Disease Research
波士顿大学阿尔茨海默病研究中心验证晶状体 β-淀粉样蛋白作为早期检测阿尔茨海默病的新型生物标志物
  • 批准号:
    10591150
  • 财政年份:
    2023
  • 资助金额:
    $ 19.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了