Theory of single-molecule biophysics
单分子生物物理学理论
基本信息
- 批准号:7734026
- 负责人:
- 金额:$ 19.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:BindingBiophysicsBook ChaptersCerealsChemicalsCollaborationsDevelopmentDimensionsFree EnergyGoalsHeightIndividualKineticsLeadLocationMechanicsMethodsModelingMolecularNational Institute of Diabetes and Digestive and Kidney DiseasesNucleic AcidsNumbersPhysicsPlayProcessProtein EngineeringProteinsRangeRateRoleRuptureSpectrum AnalysisStretchingStructureThermodynamicsTimeUbiquitinUnited States National Institutes of HealthUniversitiesinterestnovelprotein foldingresearch studyresponsesimulationsingle moleculetheories
项目摘要
In single-molecule experiments forces can be exerted directly on individual molecules and their response can be followed as a function of time. These experiments reveal fundamentally novel and unique information on the structure, dynamics, and interactions of individual biomolecules.
Theory of single molecule force spectroscopy. In collaboration with Dr. Szabo (NIDDK, NIH), we have developed and analyzed formalisms to extract thermodynamic and kinetic information from single-molecule force spectroscopy experiments. In a book chapter (Hummer and Szabo, 2008),we establish the connection between recent developments in the statistical physics of nonequilibrium processes and single-molecule pulling experiments. We then show how these connections lead to novel, practically useful methods of extracting thermodynamic information from the experiments, including binding and unfolding free energies. In the same book chapter, we also showed how kinetic information, including protein and nucleic acids unfolding rates, can be extracted from single-molecule pulling experiments.
Protein folding under force: In collaboration with Dr. Robert Best (University of Cambdrige, UK), we have studied the folding of proteins under mechanical tension. Despite a large number of studies on the mechanical unfolding of proteins, there are still relatively few successful attempts to refold proteins in the presence of a stretching force. We explored the protein refolding kinetics under force by using simulations of a coarse-grained model of ubiquitin. The effects of force on the folding kinetics could be fitted by a one-dimensional Kramers theory of diffusive barrier crossing, resulting in physically meaningful parameters for both the height and the location of the folding activation barrier. By comparing parameters obtained from pulling in different directions, we found that the unfolded state plays a dominant role in the refolding kinetics. Our findings explain why refolding becomes very slow at even moderate pulling forces and suggest how it could be practically observed in experiments at higher forces.
Force-induced protein unfolding: In collaboration with Dr. Dudko (UCSD) and Dr. Best (Cambridge), we explored the validity of a theoretical approach (developed in collaboration with by Drs. Dudko and Szabo; see also above) describing molecular rupture in the presence of force. We performed extensive simulations of the unfolding kinetics in coarse-grained protein models. Unfolding rates calculated from simulations over a broad range of stretching forces, and for different pulling directions, reveal a turnover from a force-independent process at low force to a force dependent process at high force, akin to the roll-over in unfolding rates sometimes seen in studies using chemical denaturant. While such a turnover in rates is unexpected in one dimension, we demonstrated that it could occur for dynamics in just two dimensions. Our results were found to be in accord with protein engineering experiments and simulations which indicate that the unfolding mechanism at high force can differ from the intrinsic mechanism. The apparent similarity between extrapolated and intrinsic rates in experiments, unexpected for different unfolding barriers, can be explained if the turnover occurs at low forces.
在单分子实验中,力可以直接施加在单个分子上,它们的响应可以作为时间的函数来跟踪。这些实验揭示了关于单个生物分子的结构、动力学和相互作用的基本新颖和独特的信息。
单分子力谱理论。与Szabo博士(NIDDK,NIH)合作,我们开发并分析了从单分子力谱实验中提取热力学和动力学信息的形式主义。在书中的一章(Hummer和Szabo,2008)中,我们建立了非平衡过程统计物理学的最新发展与单分子拉动实验之间的联系。然后,我们展示了这些联系如何导致从实验中提取热力学信息的新的、实用的有用方法,包括结合和展开自由能。在同一章中,我们还展示了如何从单分子拉动实验中提取动力学信息,包括蛋白质和核酸的展开速度。
力作用下的蛋白质折叠:我们与英国坎布里奇大学的罗伯特·贝斯特博士合作,研究了蛋白质在机械张力下的折叠。尽管对蛋白质的机械去折叠进行了大量的研究,但在拉伸作用下成功地重新折叠蛋白质的尝试仍然相对较少。我们利用泛素粗粒模型的模拟研究了蛋白质在力作用下的折叠动力学。力对折叠动力学的影响可以用一维Kramers扩散势垒穿越理论来拟合,从而得到了具有物理意义的折叠活化势垒高度和位置参数。通过比较不同方向拉伸得到的参数,发现未折叠状态在折叠动力学中起主导作用。我们的发现解释了为什么即使在中等拉力下,折叠也会变得非常缓慢,并表明在较高拉力的实验中如何实际观察到这种情况。
力诱导蛋白质展开:我们与UCSD的Dudko博士和剑桥的Best博士合作,探索了一种描述在力存在下分子断裂的理论方法的有效性(与Dudko和Szabo博士合作开发;另见上文)。我们在粗粒蛋白质模型中对去折叠动力学进行了广泛的模拟。通过在广泛的拉伸力范围内和不同拉伸方向的模拟计算的展开速率,揭示了在低力时从力无关的过程到高力时的力依赖过程的翻转,类似于有时在使用化学变性剂的研究中看到的展开速率的翻转。虽然这样的利率变动在一个维度上是意想不到的,但我们证明了它可以在两个维度的动态中发生。我们的结果与蛋白质工程实验和模拟结果一致,这表明高力作用下的去折叠机制可能不同于内在机制。如果翻转发生在低力下,则可以解释实验中外推速率和内在率之间的明显相似性,这对于不同展开的障碍来说是意想不到的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerhard Hummer其他文献
Gerhard Hummer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerhard Hummer', 18)}}的其他基金
Theory and simulation of protein dynamics, folding, and function
蛋白质动力学、折叠和功能的理论和模拟
- 批准号:
8349698 - 财政年份:
- 资助金额:
$ 19.13万 - 项目类别:
Theory and simulation of protein dynamics, folding, and function
蛋白质动力学、折叠和功能的理论和模拟
- 批准号:
8741377 - 财政年份:
- 资助金额:
$ 19.13万 - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Fellowship
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Discovery Projects
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
- 批准号:
2887560 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant