Feedback, lineages and cancer: A multidisciplinary approach.
反馈、谱系和癌症:多学科方法。
基本信息
- 批准号:7943959
- 负责人:
- 金额:$ 94.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAirAircraftAlgorithmsAltitudeAnimal ModelAnimalsApoptoticArchitectureAreaArtsBehaviorBiologyCancer DiagnosticsCancer PatientCell CountCell CycleCell FractionCell LineageCell ProliferationCellsCharacteristicsClassificationCollaborationsComplexComputer SimulationComputersDataDiagnosisDisciplineDiseaseEngineeringEnvironmentEquilibriumEvolutionExhibitsFeedbackForce of GravityGoalsGrowthHelicopterHeterogeneityImageImaging TechniquesIndividualInterdisciplinary StudyLearningLifeLiftingMachine LearningMalignant NeoplasmsMapsMathematicsMedicineMethodologyMethodsMinorityModelingNatural HistoryNatural regenerationNatureNormal tissue morphologyOrganPatientsPopulationProcessProliferatingPropertyResearchResearch PersonnelScientific Advances and AccomplishmentsScientistServicesShapesSolid NeoplasmStagingStem cellsSurgical FlapsSystemSystems BiologyTestingTherapeuticTherapeutic EffectTherapeutic InterventionTimeTissuesTransplantationUnited States National Institutes of HealthValidationVisualWingWorkanalytical methodbasecancer carecancer stem cellcell growthcomplex biological systemscomputer scienceinsightinterdisciplinary approachmalignant breast neoplasmmathematical modelmethod developmentmouse modelmultidisciplinaryneoplastic cellnovel strategiesoutcome forecastprognosticpublic health relevanceresponseself-renewalsimulationspatiotemporaltumortumor growthtumor initiation
项目摘要
DESCRIPTION (provided by applicant): Cancer is a disorder of unrestrained cell proliferation, but increasingly it seems that not all proliferating cells in a tumor matter equally. As with cells in normal tissues, tumor cells appear to progress through lineage stages, in which the capacity for unlimited self-renewal is, at some point, lost. The cancer stem cell hypothesis states that cancer diagnostic, prognostic and therapeutic efforts need to be focused on that population of cells-often a small minority-that undergoes long-term self-renewal. While this hypothesis acknowledges the existence of lineage progression in cancers, it is silent on the function that lineages normally serve. We recently found, through experimental and theoretical work, that a likely raison-d'etre for lineages is to provide a framework for powerful feedback control of growth and regeneration, through mechanisms that target the differentiation decisions of individual cells. For cancer to develop, such feedback control must be disrupted, and the natural history of most tumors suggests that it becomes disrupted progressively over time. Our studies indicate that what happens in a tissue when feedback is compromised can be very complex, yet still understandable and predictable. We argue, therefore, that from the details of how a tumor develops over time-size, shape, growth rate, stem cell fraction, etc.-one ought to be able to infer specific information about the kinds of control processes that operate (or recently operated) within the tumor and its surrounding environment. Such information can both provide insight into how different types of tumors develop, as well as patient-specific information about prognosis and the effects of therapy. The proposed project focuses on learning how to obtain such information from the observable properties of tumors. Three-dimensional mathematical models that incorporate various types of lineage progression, feedback, evolutionary processes, and therapeutic interventions will first be created, analyzed, and used to generate large numbers of simulations of solid tumor growth and progression. From these results, mappings from tumor properties to feedback and lineage architectures will be found through state-of-the art machine-learning algorithms. The ability of these mappings to reproduce and predict the behaviors of real tumors will be assessed using established animal models of breast cancer, in which luminescent and fluorescent imaging techniques are used to follow tumors, and their stem cells, over time. This will enable the validation of particular model architectures, or suggest methods for their refinement, and allow the determination of control strategies at work in tumors that can be exploited to provide a leap forward in both personalized medicine and cancer care. What makes this project a "grand opportunity" is the pursuit of rapid progress through a highly multidisciplinary team that will draw on new advances in the areas of cell lineage behaviors, cancer stem cells, three-dimensional mathematical and computational modeling, and machine-learning.
PUBLIC HEALTH RELEVANCE: Tumors arise when the feedback control of cell growth breaks down. We hypothesize that, within the details of how a tumor grows lie important clues about the nature of feedback processes-including those that still remain or may be re-activated. By describing how such clues can be found, we will be defining a new approach for predicting how individual tumors behave in cancer patients, and how they respond to different kinds of therapy.
描述(由申请人提供):癌症是一种无限制细胞增殖的疾病,但越来越多的人认为,肿瘤中的所有增殖细胞并不都是同等重要的。与正常组织中的细胞一样,肿瘤细胞似乎通过谱系阶段进展,其中无限自我更新的能力在某个时候丧失。癌症干细胞假说指出,癌症的诊断、预后和治疗工作需要集中在那些经历长期自我更新的细胞群体上通常是一小部分。虽然这一假说承认癌症中谱系进展的存在,但它对谱系通常发挥的功能保持沉默。我们最近发现,通过实验和理论工作,谱系的一个可能的存在理由是通过针对单个细胞的分化决定的机制,为生长和再生的强大反馈控制提供一个框架。对于癌症的发展,这种反馈控制必须被破坏,大多数肿瘤的自然史表明,随着时间的推移,它会逐渐被破坏。我们的研究表明,当反馈受到损害时,组织中发生的事情可能非常复杂,但仍然可以理解和预测。因此,我们认为,从肿瘤如何随时间发展的细节-大小,形状,生长速度,干细胞分数等-人们应该能够推断出关于在肿瘤及其周围环境中操作(或最近操作)的控制过程的种类的特定信息。这些信息既可以深入了解不同类型的肿瘤如何发展,也可以提供有关预后和治疗效果的患者特定信息。该项目的重点是学习如何从肿瘤的可观察特性中获得这些信息。将首先创建、分析并使用包含各种类型的谱系进展、反馈、进化过程和治疗干预的三维数学模型来生成大量实体瘤生长和进展的模拟。从这些结果中,将通过最先进的机器学习算法找到从肿瘤特性到反馈和谱系架构的映射。这些映射再现和预测真实的肿瘤行为的能力将使用已建立的乳腺癌动物模型进行评估,其中发光和荧光成像技术用于随时间跟踪肿瘤及其干细胞。这将能够验证特定的模型架构,或提出改进方法,并允许确定在肿瘤中发挥作用的控制策略,这些策略可用于在个性化医疗和癌症护理方面实现飞跃。使这个项目成为“重大机遇”的是通过一个高度多学科的团队追求快速进展,该团队将利用细胞谱系行为,癌症干细胞,三维数学和计算建模以及机器学习领域的新进展。
公共卫生相关性:当细胞生长的反馈控制失效时,肿瘤就会出现。我们假设,在肿瘤如何生长的细节中隐藏着关于反馈过程性质的重要线索,包括那些仍然存在或可能被重新激活的反馈过程。通过描述如何找到这些线索,我们将定义一种新的方法来预测癌症患者中个体肿瘤的行为,以及它们对不同治疗的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur D Lander其他文献
Arthur D Lander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur D Lander', 18)}}的其他基金
Mentor Training to enhance mentorship in an interdisciplinary training program
导师培训旨在加强跨学科培训计划中的指导
- 批准号:
10393853 - 财政年份:2020
- 资助金额:
$ 94.67万 - 项目类别:
Complexity, Cooperation and Community in Cancer
癌症的复杂性、合作和社区
- 批准号:
10392892 - 财政年份:2018
- 资助金额:
$ 94.67万 - 项目类别:
PROJECT II: Vertebrate Animal Models of Cornelia de Lange Syndrome
项目二:Cornelia de Lange 综合征的脊椎动物模型
- 批准号:
8378230 - 财政年份:2012
- 资助金额:
$ 94.67万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Building an Academic Pathway for Advanced Air Mobility Aircraft Maintenance Technicians
为高级空中机动飞机维修技术人员建立学术途径
- 批准号:
2300117 - 财政年份:2023
- 资助金额:
$ 94.67万 - 项目类别:
Standard Grant
Bio-inspired flow control studies under gust and turbulence effect for next-generation Urban Air Mobility aircraft.
下一代城市空中交通飞机阵风和湍流效应下的仿生流量控制研究。
- 批准号:
2865033 - 财政年份:2023
- 资助金额:
$ 94.67万 - 项目类别:
Studentship
Development of model-embedded air data instrumentation and sensor integration for advanced unmanned aircraft
先进无人机模型嵌入式空气数据仪器和传感器集成的开发
- 批准号:
2895318 - 财政年份:2023
- 资助金额:
$ 94.67万 - 项目类别:
Studentship
Experimental Validation of CFD Modeling of Aerosols in Aircraft Cabins Considering Heating Ventilation and Air Conditioning (HVAC) Systems for COVID-19 & other Airborne Diseases
考虑适用于 COVID-19 的供暖通风和空调 (HVAC) 系统的机舱内气溶胶 CFD 建模的实验验证
- 批准号:
570756-2021 - 财政年份:2022
- 资助金额:
$ 94.67万 - 项目类别:
Alliance Grants
Unmanned Air Systems: a Buttress to the Development of Greener, Leaner and Safer Aircraft
无人机系统:开发更环保、更精简、更安全的飞机的支柱
- 批准号:
RGPIN-2020-06034 - 财政年份:2022
- 资助金额:
$ 94.67万 - 项目类别:
Discovery Grants Program - Individual
PredictiOn, Assessment and ExpeRimental Validation of AeroservoelastiC Tools and Processes in Design of Novel and Flexible AIRcraft Configurations [ORCA-AIR]
新型灵活飞机配置设计中气动伺服弹性工具和过程的预测、评估和实验验证 [ORCA-AIR]
- 批准号:
578448-2022 - 财政年份:2022
- 资助金额:
$ 94.67万 - 项目类别:
Alliance Grants
Unmanned Air Systems: a Buttress to the Development of Greener, Leaner and Safer Aircraft
无人机系统:开发更环保、更精简、更安全的飞机的支柱
- 批准号:
RGPIN-2020-06034 - 财政年份:2021
- 资助金额:
$ 94.67万 - 项目类别:
Discovery Grants Program - Individual
Experimental Validation of CFD Modeling of Aerosols in Aircraft Cabins Considering Heating Ventilation and Air Conditioning (HVAC) Systems for COVID-19 & other Airborne Diseases
考虑适用于 COVID-19 的供暖通风和空调 (HVAC) 系统的机舱内气溶胶 CFD 建模的实验验证
- 批准号:
570756-2021 - 财政年份:2021
- 资助金额:
$ 94.67万 - 项目类别:
Alliance Grants
Unmanned Air Systems: a Buttress to the Development of Greener, Leaner and Safer Aircraft
无人机系统:开发更环保、更精简、更安全的飞机的支柱
- 批准号:
RGPIN-2020-06034 - 财政年份:2020
- 资助金额:
$ 94.67万 - 项目类别:
Discovery Grants Program - Individual
Covid 19: An Aircraft Cabin Air Disinfection System for Covid-19
Covid 19:针对 Covid-19 的机舱空气消毒系统
- 批准号:
553525-2020 - 财政年份:2020
- 资助金额:
$ 94.67万 - 项目类别:
Alliance Grants