MRI CORE

核磁共振核心

基本信息

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. At OMRF and OUHSC we utilize high-resolution MR techniques (including microscopic imaging and spectroscopy) for biomedical research. The use of rodent experimental animal models has dramatically advanced our ability to analyze and understand the molecular basis of various diseases, however few methods exist to be able to visualize the various tissues, organs and vascular systems of rodents in vivo and non-invasively at any meaningful resolution. The following instrument, a Bruker Biospin Biospec 70/30 USR horizontal magnetic small animal imaging spectrometer, is capable of obtaining in vivo microimages (at ~100 ¿m resolution or better for microscopic MRI) in rodent experimental animal models, and in addition provide in vivo functional information on molecular targets (contrast-enhanced MRI) as well as structural information on metabolites, such as lipids/phospholipids, bioenergetic compounds, creatine, choline, and lactate (using magnetic resonance spectroscopy (MRS)). Magnetic resonance imaging (MRI), and its related techniques in biomedical research, such as MR angiography (MRA), MR spectroscopy (MRS), have developed over the past few years with significant advances in high-field magnets, high-strength magnetic field gradients, imaging probe designs and tissue-specific contrast agents, which have allowed selective morphological, functional and metabolic investigations in mice and rats to be possible. Another recent advancement in MR technology has been the development of MR microscopy. Images can be obtained with in-plane resolutions better than 100 micron, and in-vivo spectra can be collected with sensitivity and spectral resolution previously obtained only by narrow-bore liquid NMR spectrometers. Morphological MRI and/or microscopic MRI (~100 ¿m resolution) is currently used in our facility to localize and determine the extent of brain cancer lesions in a rat model (Towner) and breast and/or melanoma cancer lesions in rats and mice (Chen), and to monitor temperature changes in laser-induced tumor ablation with the use of phase-sensitive and chemicla-shift imaging (CSI) methods(Chen). Magnetic resonance spectroscopy (MRS), using image-guided MRS, is also used to monitor metabolic profiles for rat brain tumor pathogenesis (lipid and brain metabolite alterations; Towner), as well as assess therapeutic agents (Towner).
这个子项目是许多研究子项目中的一个 由NIH/NCRR资助的中心赠款提供的资源。子项目和 研究者(PI)可能从另一个NIH来源获得了主要资金, 因此可以在其他CRISP条目中表示。所列机构为 研究中心,而研究中心不一定是研究者所在的机构。 在OMRF和OUHSC,我们利用高分辨率MR技术(包括显微成像和光谱学)进行生物医学研究。 啮齿动物实验动物模型的使用极大地提高了我们分析和理解各种疾病的分子基础的能力,然而很少有方法能够以任何有意义的分辨率在体内和非侵入性地可视化啮齿动物的各种组织、器官和血管系统。 以下仪器,Bruker Biospin Biospec 70/30 USR水平磁性小动物成像光谱仪,能够获得体内显微图像(约100分)m分辨率或更好的显微MRI)在啮齿动物实验动物模型中,此外还提供有关分子靶点的体内功能信息(对比增强MRI)以及代谢物的结构信息,例如脂质/磷脂、生物能量化合物、肌酸、胆碱和乳酸盐(使用磁共振波谱(MRS))。 磁共振成像(MRI)及其在生物医学研究中的相关技术,如磁共振血管造影(MRA)、磁共振波谱(MRS),在过去几年中随着高场磁体、高强度磁场梯度、成像探头设计和组织特异性造影剂的显著进步而发展,这使得在小鼠和大鼠中进行选择性形态学、功能和代谢研究成为可能。 MR技术的另一个最新进展是MR显微镜的发展。 图像可以以优于100微米的面内分辨率获得,并且可以以先前仅通过窄孔液体NMR光谱仪获得的灵敏度和光谱分辨率收集体内光谱。形态MRI和/或显微镜MRI(~100 μ m分辨率)目前在我们的设施中用于定位和确定大鼠模型(托纳)中脑癌病变的程度以及大鼠和小鼠中乳腺癌和/或黑色素瘤病变(Chen),并使用相敏和化学位移成像(CSI)方法监测激光诱导肿瘤消融中的温度变化(Chen)。 使用图像引导MRS的磁共振波谱(MRS)也用于监测大鼠脑肿瘤发病机制的代谢特征(脂质和脑代谢物改变;托纳),以及评估治疗剂(托纳)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rheal A Towner其他文献

Rheal A Towner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rheal A Towner', 18)}}的其他基金

SMALL ANIMAL IMAGING
小动物成像
  • 批准号:
    8364981
  • 财政年份:
    2011
  • 资助金额:
    $ 14.36万
  • 项目类别:
BIO2010
生物2010
  • 批准号:
    8359645
  • 财政年份:
    2011
  • 资助金额:
    $ 14.36万
  • 项目类别:
BIO2010
生物2010
  • 批准号:
    8167536
  • 财政年份:
    2010
  • 资助金额:
    $ 14.36万
  • 项目类别:
COBRE: OK MED RES FOUND: CORE IV: MRI IMAGING IN VIVO
COBRE:发现良好的医学研究成果:核心 IV:体内 MRI 成像
  • 批准号:
    8168456
  • 财政年份:
    2010
  • 资助金额:
    $ 14.36万
  • 项目类别:
Therapeutic Evaluation of Magnetic Nanoprobes Specific for Malignant Tumor Marker
恶性肿瘤标志物特异性磁性纳米探针的治疗评价
  • 批准号:
    7738239
  • 财政年份:
    2009
  • 资助金额:
    $ 14.36万
  • 项目类别:
Chemoprevention of Gliomas using Nitrones with Anti-c-Met Activity
使用具有抗 c-Met 活性的硝酮化学预防神经胶质瘤
  • 批准号:
    7596473
  • 财政年份:
    2008
  • 资助金额:
    $ 14.36万
  • 项目类别:
MRI CORE
核磁共振核心
  • 批准号:
    7725084
  • 财政年份:
    2008
  • 资助金额:
    $ 14.36万
  • 项目类别:
Chemoprevention of Gliomas using Nitrones with Anti-c-Met Activity
使用具有抗 c-Met 活性的硝酮化学预防神经胶质瘤
  • 批准号:
    7474147
  • 财政年份:
    2008
  • 资助金额:
    $ 14.36万
  • 项目类别:
COBRE: OK MED RES FOUND: CORE IV: MRI IMAGING IN VIVO
COBRE:发现良好的医学研究成果:核心 IV:体内 MRI 成像
  • 批准号:
    7610584
  • 财政年份:
    2007
  • 资助金额:
    $ 14.36万
  • 项目类别:
ANTIOXIDANT INHIBITION OF GLIOMAS: MRI/MRS EVALUATION
神经胶质瘤的抗氧化剂抑制:MRI/MRS 评估
  • 批准号:
    7610262
  • 财政年份:
    2007
  • 资助金额:
    $ 14.36万
  • 项目类别:

相似海外基金

SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 14.36万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 14.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了