Genetic, Genomic, and Imaging Biomarkers in Degenerative Dementia
退行性痴呆的遗传、基因组和影像生物标志物
基本信息
- 批准号:7937941
- 负责人:
- 金额:$ 45.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithmsAreaBiological MarkersBloodBlood specimenCaliforniaCentral Nervous System DiseasesClassificationClinicalClinical TrialsCollaborationsComplexComputer softwareDNADataData AnalysesData SetDementiaDiagnosisDiagnosticDimensionsDiseaseEarly DiagnosisFunctional disorderFunding MechanismsGene ExpressionGenesGeneticGenetic MarkersGenomicsGenotypeGoalsGrantHybridsImageLinkLiquid substanceMemoryMethodsMolecularNetwork-basedNeurodegenerative DisordersOccupationsPathway AnalysisPatientsPerformancePeripheralPhenotypeProcessPublic HealthRecoveryResearch PersonnelRunningSNP genotypingSamplingSan FranciscoSeriesSignal TransductionSingle Nucleotide PolymorphismSourceStratificationStudy SubjectTherapeuticTherapy EvaluationTissuesUnited States National Institutes of HealthUniversitiesVariantWeightWorkage relatedbasecohortcomparative effectivenesscosteffectiveness researchgenetic associationgenetic risk factorgenetic variantimprovedinnovationneuroimagingneuropsychologicalnovelperipheral bloodprognosticpublic health relevancetooltrait
项目摘要
DESCRIPTION (provided by investigator): This application addresses the Broad Challenge Area 05 (Comparative Effectiveness Research) and specific Challenge Topic 05-AG-103 (Imaging and Fluid Biomarkers for Early Diagnosis and Progression of Aging- related Diseases and Conditions including Neurodegenerative Diseases). In collaboration with the Memory and Aging Center at the University of California San Francisco (UCSF-MAC), we have been collecting - as part of ongoing studies - DNA, RNA, and gene expression data from peripheral blood in a large cohort of patients with degenerative dementia and controls. This series is extremely well characterized, with a large body of clinical, neuropsychological, and imaging data. Our approach is based on the hypothesis that the genetic component associated with degenerative dementia is reflected in peripheral tissues, such as peripheral blood, and can be captured by gene expression studies to be used as an intermediate phenotype for genetic association studies. Our group and others at UCLA are developing novel data analysis methods (iWGCNA), which provide a powerful framework for integrating genetic marker data, gene expression data, and complex phenotypes. Responding to the Challenge Areas and specific Challenge Topics identified by the NIH we propose to: 1) obtain genotyping data on a large series of patients with degenerative dementia and controls, where gene expression and longitudinal imaging and neuropsychological data are already available, and develop a biomarker set and classifier; 2) to build a classifier based on imaging data collected on the same subjects; 3) to compare the genetic/genomic and the imaging classifiers, and build a composite classifier and assess whether performance using the two different sources of information together is better than either alone. We expect that a composite, multi-modal biomarker set will perform better than either method alone, and will be the first multi-modal classifier in dementia, based solely on these biomarkers. The overarching goal of this work is to identify surrogate biomarkers in order to build a diagnostic classifier that would be invaluable in early and accurate diagnosis, as well as for sample stratification for clinical trials. This project leverages our collaboration with the UCSF-MAC by adding a new dimension to the phenotypic and genetic data obtained via other long-term funding mechanisms in one of the largest and best-characterized AD/FTLD series in the world. Since most of the phenotype, gene expression, and imaging data are already available, only a relatively marginal effort and cost is required to extend the genetic characterization of this cohort with genotyping data, providing a unique opportunity and niche for this Challenge Grant mechanism. The work proposed here is ready to begin, and will result in immediate job creation and retention consistent with the goals of the Recovery Act.
PUBLIC HEALTH RELEVANCE: Identification of biomarkers enriching diagnostic, prognostic, and therapeutic capabilities is an important goal in dementia. We propose to build a molecular classifier based on peripheral blood samples and imaging data from demented patients. This would be a valuable tool for biomarker identification, improved patients classification, therapy evaluation, and to further our understanding of disease pathophysiology.
描述(由研究者提供):本申请涉及广泛挑战领域05(比较有效性研究)和特定挑战主题05-AG-103(用于衰老相关疾病和病症(包括神经退行性疾病)早期诊断和进展的成像和液体生物标志物)。我们与加州旧金山大学弗朗西斯科记忆与衰老中心(UCSF-MAC)合作,收集了大量退行性痴呆患者和对照组外周血的DNA、RNA和基因表达数据,作为正在进行的研究的一部分。这一系列的特征非常好,有大量的临床、神经心理学和影像学数据。我们的方法是基于这样的假设,即与退行性痴呆相关的遗传成分反映在外周组织中,如外周血,并且可以通过基因表达研究捕获,以用作遗传关联研究的中间表型。我们的团队和加州大学洛杉矶分校的其他人正在开发新的数据分析方法(iWGCNA),它为整合遗传标记数据,基因表达数据和复杂表型提供了一个强大的框架。针对NIH确定的挑战领域和特定挑战主题,我们建议:1)获得大量退行性痴呆患者和对照组的基因分型数据,其中基因表达和纵向成像和神经心理学数据已经可用,并开发生物标志物集和分类器; 2)基于收集的相同受试者的成像数据构建分类器; 3)比较遗传/基因组分类器和成像分类器,并构建复合分类器,并评估一起使用两种不同信息源的性能是否优于单独使用任何一种。我们预计,一个复合的、多模态的生物标志物集将比单独的任何一种方法都表现得更好,并且将成为痴呆症中第一个仅基于这些生物标志物的多模态分类器。这项工作的首要目标是确定替代生物标志物,以建立一个诊断分类器,这将是非常宝贵的早期和准确的诊断,以及临床试验的样本分层。该项目利用我们与UCSF-MAC的合作,为通过其他长期资助机制获得的表型和遗传数据增加了一个新的维度,这些数据是世界上最大和最具特色的AD/FTLD系列之一。由于大多数表型、基因表达和成像数据已经可用,因此仅需要相对少量的努力和成本来扩展具有基因分型数据的该队列的遗传表征,从而为该挑战资助机制提供独特的机会和利基。这里提出的工作已经准备好开始,并将导致立即创造就业机会和保留符合复苏法案的目标。
公共卫生相关性:识别生物标志物丰富诊断,预后和治疗能力是痴呆症的一个重要目标。我们建议建立一个分子分类器的基础上,外周血样本和影像学数据从痴呆症患者。这将是一个有价值的工具,生物标志物识别,改善患者分类,治疗评估,并进一步了解疾病的病理生理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giovanni Coppola其他文献
Giovanni Coppola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giovanni Coppola', 18)}}的其他基金
Impact of coding and non-coding variation in progressive supranuclear palsy
编码和非编码变异对进行性核上性麻痹的影响
- 批准号:
9431079 - 财政年份:2017
- 资助金额:
$ 45.5万 - 项目类别:
Empowering Personalized Medicine: Integrating Imaging, Genetics, and Biomarkers
赋能个性化医疗:整合影像、遗传学和生物标志物
- 批准号:
8464281 - 财政年份:2012
- 资助金额:
$ 45.5万 - 项目类别:
Empowering Personalized Medicine: Integrating Imaging, Genetics, and Biomarkers
赋能个性化医疗:整合影像、遗传学和生物标志物
- 批准号:
8304694 - 财政年份:2012
- 资助金额:
$ 45.5万 - 项目类别:
Empowering Personalized Medicine: Integrating Imaging, Genetics, and Biomarkers
赋能个性化医疗:整合影像、遗传学和生物标志物
- 批准号:
8659510 - 财政年份:2012
- 资助金额:
$ 45.5万 - 项目类别:
Integrative Center for Neurogenetics and Neurogenomics - Overall
神经遗传学和神经基因组学综合中心 - 总体
- 批准号:
9332490 - 财政年份:2009
- 资助金额:
$ 45.5万 - 项目类别:
Integrative Center for Neurogenetics and Neurogenomics - Overall
神经遗传学和神经基因组学综合中心 - 总体
- 批准号:
9131813 - 财政年份:2009
- 资助金额:
$ 45.5万 - 项目类别:
Genetic, Genomic, and Imaging Biomarkers in Degenerative Dementia
退行性痴呆的遗传、基因组和影像生物标志物
- 批准号:
7814082 - 财政年份:2009
- 资助金额:
$ 45.5万 - 项目类别:
Genetics, Genomics and Bioinformatics (Core B)
遗传学、基因组学和生物信息学(核心 B)
- 批准号:
9056016 - 财政年份:
- 资助金额:
$ 45.5万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




