Simulation Tool to Rapidly Design Optimize and Prototype Microfluidic Devices
用于快速设计、优化和原型微流控设备的仿真工具
基本信息
- 批准号:7919532
- 负责人:
- 金额:$ 40.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-29 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAutomationBiological ModelsBiological SciencesBiotechnologyChemicalsClinicalCollaborationsCommunitiesComplexComputer AnalysisComputer softwareDNADNA SequenceDNA purificationDetectionDevelopmentDiagnosticDropsDrug Delivery SystemsElectrophoresisEnvironment DesignGenerationsGenomeGenomicsGoalsHumanInstructionLarge-Scale SequencingLibrariesLiquid substanceManualsManufacturer NameMarketingMasksMedical DeviceMethodologyMethodsMicrofabricationMicrofluidic MicrochipsMicrofluidicsModelingNational Human Genome Research InstitutePerformancePharmacologic SubstancePhasePhysicsPreparationProcessProtocols documentationReagentResearchResearch Project GrantsSalesSamplingSoftware DesignSoftware EngineeringSolutionsSystemTechnologyTestingTimeTranslatingUniversitiesbasebiochipbiodefensecommercial applicationcomputerized toolscostcost effectivedesignexperiencefunctional genomicsgraphical user interfaceimprovedinnovationinstrumentmicro-total analysis systemmodels and simulationnext generationnovelphase 2 studyproduct developmentprogramsprototypepublic health relevanceresearch and developmentresearch studysimulationsoftware developmentsuccesstooltrenduser-friendly
项目摘要
DESCRIPTION (provided by applicant): Microfluidic technologies are an excellent candidate to achieve the goal set forth by NHGRI to reduce the total sequencing cost by two- or four-orders of magnitude from the current cost of sequencing a human-sized genome. Microfluidic chips enable highly reduced use of the sample/reagent and integration of all sequencing steps from sample preparation to separation and detection into a single analytical instrument. Current chip design methods rely primarily on trial-and-error experiments or employ prohibitively expensive high-fidelity computational analysis. These approaches are time consuming, costly, and require experimental or numerical modeling expertise that cannot be expected of chip designers and manufacturers. In addition, the lack of direct interfacing between design analysis tools and microfabrication processes leads to additional cost and delay in the development of functional prototypes. There is a clear and unmet need for design tool that can deliver multi-functional microfluidic prototypes with superior performance at a low cost and fast turn-around times. We propose to develop a novel, integrated, paradigm-transforming microfluidic design toolkit, based on system- level simulation and reduced-order model methodology to enable rapid simulation, optimization, and prototyping of next-generation microfluidic systems for genomic analysis. In Phase II, we will develop multi-physics, reduced-order models for liquid filling, genomic sample extraction and purification, and DNA hybridization, which in conjunction with our models of electrophoresis and PCR in Phase I will establish a self-contained, complete design capability for critical microfluidic genomic applications. Constraint-based optimizers using nonlinear programming will be developed for rapid chip design. Interfaces bridging the design-microfabrication gap will be developed and expanded to accommodate both maskless and mask-based fabrications. Novel functionalities and capabilities will be incorporated into the development of the integrated design environment for improved ease-of-use, integration, and automation. Through industrial and academic collaboration, we will validate and demonstrate the proposed prototyping methodology by developing optimized design of genomic microchips for microfluidic PCR and DNA separation and sequencing. Beyond Phase II, we will carry out software engineering and packaging activities and optimize the toolkit performance in terms of execution efficacy, reliability, interface diversity, and ease-of-use for commercial release and sales in partnership with Intellisense Corp. An experienced, multi-disciplinary team with expertise in all aspects of the proposed study - reduced-order modeling & simulation, optimization, software development, microfluidic fabrication and testing has been assembled for successful completion of the Phase II research. The developed design tool will have critical applications in microfluidics, life sciences, biomedical and biodefense arena. The proposed effort will beneficially impact the genomic analysis and diagnostics community in terms of shrinking the overall R&D cycles (from concepts to optimized physical prototype within ~days) and reducing the cost via elimination of trial-and-error-based design and manual transfer of the layout information to the microfabrication process. PUBLIC HEALTH RELEVANCE: The project is to develop a novel, integrated, paradigm-transforming microfluidic design tool to enable rapid simulation, optimization, and prototyping of next-generation microfluidic systems for genomic analysis. The Phase II end-product will find applicability in the microfluidic/integrated biomicrosystem section of the overall biotechnology market, engaged in life science research. Target commercial applications for the developed technology include several established and emerging market sectors including pharmaceutical, biotechnology, clinical diagnostics, medical devices, and drug delivery.
描述(由申请人提供):微流体技术是实现NHGRI提出的目标的极好候选者,该目标是将总测序成本从目前测序人类大小的基因组的成本降低两个或四个数量级。微流控芯片能够大大减少样品/试剂的使用,并将从样品制备到分离和检测的所有测序步骤集成到单个分析仪器中。目前的芯片设计方法主要依赖于试错实验或采用昂贵的高保真计算分析。这些方法是耗时的,昂贵的,并需要实验或数值建模的专业知识,不能指望芯片设计师和制造商。此外,设计分析工具和微制造工艺之间缺乏直接接口,导致功能原型开发的额外成本和延迟。对于能够以低成本和快速周转时间提供具有上级性能的多功能微流体原型的设计工具存在明确且未满足的需求。我们建议开发一种新的,集成的,范式转换的微流体设计工具包,基于系统级仿真和降阶模型方法,以实现用于基因组分析的下一代微流体系统的快速仿真,优化和原型设计。在第二阶段,我们将开发用于液体填充、基因组样品提取和纯化以及DNA杂交的多物理、降阶模型,这些模型与我们在第一阶段的电泳和PCR模型相结合,将为关键的微流体基因组应用建立一个独立的、完整的设计能力。将为快速芯片设计开发使用非线性规划的基于约束的优化器。将开发和扩展弥合设计-微制造差距的接口,以适应无掩模和基于掩模的制造。新的功能和能力将纳入综合设计环境的开发,以提高易用性、集成性和自动化。通过工业和学术合作,我们将通过开发用于微流控PCR和DNA分离和测序的基因组微芯片的优化设计来验证和展示所提出的原型设计方法。在第二阶段之后,我们将开展软件工程和打包活动,并在执行效率、可靠性、界面多样性和易用性方面优化工具包性能,以便与Intellisense公司合作进行商业发布和销售。微流控制造和测试已经组装成功完成第二阶段的研究。开发的设计工具将在微流体,生命科学,生物医学和生物防御竞技场的关键应用。所提出的努力将有益地影响基因组分析和诊断社区,在缩小整体研发周期(从概念到优化的物理原型在~天内),并通过消除基于试错的设计和手动转移的布局信息的微细加工过程降低成本。公共卫生相关性:该项目旨在开发一种新型的,集成的,范式转换的微流体设计工具,以实现用于基因组分析的下一代微流体系统的快速模拟,优化和原型设计。第二阶段的最终产品将适用于整个生物技术市场的微流体/集成生物微系统部分,从事生命科学研究。开发技术的目标商业应用包括几个成熟和新兴的市场领域,包括制药,生物技术,临床诊断,医疗设备和药物输送。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model.
- DOI:10.1007/s10404-011-0870-x
- 发表时间:2012-01-01
- 期刊:
- 影响因子:2.8
- 作者:Song, Hongjun;Wang, Yi;Pant, Kapil
- 通讯作者:Pant, Kapil
System-level simulation of liquid filling in microfluidic chips.
- DOI:10.1063/1.3589843
- 发表时间:2011-05
- 期刊:
- 影响因子:3.2
- 作者:Hongjun Song;Yi Wang;K. Pant
- 通讯作者:Hongjun Song;Yi Wang;K. Pant
Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.
电渗和压力驱动流相结合的微通道中跨流扩散的比例定律。
- DOI:10.1007/s10404-012-1058-8
- 发表时间:2013
- 期刊:
- 影响因子:2.8
- 作者:Song,Hongjun;Wang,Yi;Pant,Kapil
- 通讯作者:Pant,Kapil
Nafion Film Based Micro-nanofluidic Device for Concurrent DNA Preconcentration and Separation in Free Solution.
- DOI:10.1007/s10404-014-1357-3
- 发表时间:2014-10-01
- 期刊:
- 影响因子:2.8
- 作者:Song, Hongjun;Wang, Yi;Garson, Charles;Pant, Kapil
- 通讯作者:Pant, Kapil
Concurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device.
基于双极电极的微流体装置中的并行 DNA 预富集和分离。
- DOI:10.1039/c4ay01858c
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Song,Hongjun;Wang,Yi;Garson,Charles;Pant,Kapil
- 通讯作者:Pant,Kapil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Wang其他文献
<b><span style="font-family:'Times New Roman','serif';font-size:18pt;">Detecting Chaos from Time Series of</span><span style="font-family:宋体;font-size:18pt;"> </span><span style=&quo
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.7
- 作者:
Xin Su;Yi Wang;Shengseng Duan;Junhai Ma; - 通讯作者:
bspan style=font-family:Times New Roman,serif;font-size:18pt;Detecting Chaos from Time Series of/spanspan style=font-family:宋体;font-size:18pt; /spanspan style=
从时间序列中检测混沌
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.7
- 作者:
Xin Su;Yi Wang;Shengseng Duan;Junhai Ma - 通讯作者:
Junhai Ma
Yi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Wang', 18)}}的其他基金
Fluid mechanics approach to tissue perfusion quantification in MRI
MRI 中组织灌注定量的流体力学方法
- 批准号:
10720485 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Key gut microbes shape intestinal epithelial lineage development, differentiation and metabolic function
关键肠道微生物塑造肠上皮谱系的发育、分化和代谢功能
- 批准号:
10572633 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
7T Magnetic Resonance Imaging System for Basic, Translational and Clinical Research
用于基础、转化和临床研究的 7T 磁共振成像系统
- 批准号:
9940405 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Concurrent multiphoton microscopy and magnetic resonance imaging (COMPMRI)
并行多光子显微镜和磁共振成像 (COMPMRI)
- 批准号:
9360610 - 财政年份:2016
- 资助金额:
$ 40.13万 - 项目类别:
Multiple Sclerosis Lesion Magnetic Susceptibility Activity
多发性硬化症病变磁化率活性
- 批准号:
9922392 - 财政年份:2015
- 资助金额:
$ 40.13万 - 项目类别:
International Workshop on MRI Phase Contrast and Quantitative Susceptibility Mapp
MRI 相差和定量磁化率图国际研讨会
- 批准号:
8461038 - 财政年份:2012
- 资助金额:
$ 40.13万 - 项目类别:
MRI method for quantitatively mapping cerebral microbleeds
定量绘制脑微出血图的 MRI 方法
- 批准号:
8431454 - 财政年份:2011
- 资助金额:
$ 40.13万 - 项目类别:
MRI method for quantitatively mapping cerebral microbleeds
定量绘制脑微出血图的 MRI 方法
- 批准号:
8116244 - 财政年份:2011
- 资助金额:
$ 40.13万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Research Grant
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Collaborative R&D