High dynamic range multiphoton microscopy for large-scale imaging
用于大规模成像的高动态范围多光子显微镜
基本信息
- 批准号:9242942
- 负责人:
- 金额:$ 23.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:BallisticsBrainBrain imagingCell SurvivalComplexDendritic SpinesDependenceDetectionDevelopmentDevicesElectronicsFeedbackFluorescenceFoundationsGeneticGoalsImageIn VitroLabelLasersLightLightingMeasuresMethodsMicroscopeMicroscopyModificationMusNeuronsNoisePenetrationPhototoxicityPopulationProcessPublic DomainsReporterResolutionSamplingScanningSignal TransductionSoftware DesignSpeedStructureSurfaceTechniquesTechnologyTestingThickTimeTissuesVariantcostcost effectivedetectordigitalimprovedin vivo imagingmillimetermulti-photonneuronal cell bodynovelreal world applicationrelating to nervous systemtwo-photon
项目摘要
ABSTRACT
Multiphoton microscopy is one of the preferred techniques for high-resolution functional brain
imaging because of its remarkable depth penetration in thick tissue. In standard configurations,
such imaging involves scanning a femtosecond laser focus in 3D throughout a sample. The
laser power is fixed during the scan and image information is contained in the time dependence
of the detected fluorescence signal. Several problems can occur with this technique. First, in
common cases where the sample contains extreme variations in brightness, for example
between large somas and much finer dendritic processes, it is often impossible to capture the
full range of signals without either saturating the detector when scanning over bright regions, or
losing signal when scanning over dim regions. Second, when imaging time-varying signals from
functional reporters such as GCaMP, large brightness variations occur that cannot be predicted
in advance, forcing the user to use a low illumination to minimize the possibility of detector
saturation, thus potentially compromising SNR. Third, when performing volumetric scans
through an extended range of depths, a single laser power becomes either too weak at large
depths or too strong at shallow depths.
We propose a simple solution to solve all these problems. The solution involves actively
regulating the laser power pixel-by-pixel using feedback electronics. We have demonstrated that
our technique can improve the dynamic range of two-photon microscopes by several orders of
magnitude for moderately fast pixel times of 20s, achieving an unprecedentedly high dynamic
range (HDR) of 1011:1. Our goals for this project are the:
1) Development of ultrafast feedback electronics for video-rate HDR imaging.
2) Development of switched multiplexing technique for large-scale multi-region HDR imaging.
3) Application of multiphoton HDR imaging to anatomical and functional mouse brain imaging.
Our goal is to enable comprehensive large-scale multiphoton imaging with unprecedented
dynamic range in a simple manner that can be readily implementable by many labs at
reasonable cost and with minimal hardware modifications.
摘要
多光子显微镜是高分辨率脑功能研究的首选技术之一
由于其在厚组织中的显著深度穿透,在标准配置中,
这种成像包括在整个样品中以3D方式扫描飞秒激光焦点。的
激光功率在扫描期间是固定的,并且图像信息包含在时间依赖性中
检测到的荧光信号。这种技术可能会出现几个问题。一是在
常见的情况下,样品包含亮度的极端变化,例如
在大胞体和更细的树枝状突起之间,通常不可能捕捉到
全范围信号,在扫描亮区时不会使探测器饱和,
在扫描暗淡区域时丢失信号。第二,当对来自
如GCaMP的功能性报告基因,发生无法预测的大的亮度变化
提前,迫使用户使用低照度,以最大限度地减少检测器的可能性
饱和,从而潜在地损害SNR。第三,当执行体积扫描时,
通过扩展的深度范围,单个激光功率要么变得太弱,
深度或在浅深度太强。
我们提出了一个简单的解决方案来解决所有这些问题。解决方案包括积极
使用反馈电子器件逐像素地调节激光功率。我们已经证明
我们的技术可以将双光子显微镜的动态范围提高几个数量级
幅度为20微秒的适度快速像素时间,实现前所未有的高动态
范围(HDR)为1011:1。我们对这个项目的目标是:
1)用于视频速率HDR成像的超快反馈电子器件的开发。
2)用于大规模多区域HDR成像的切换复用技术的发展。
3)多光子HDR成像在小鼠脑解剖和功能成像中的应用。
我们的目标是实现全面的大规模多光子成像,
动态范围以简单的方式,可以很容易地实现许多实验室,
合理的成本和最小的硬件修改。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Gordon Davison其他文献
Ian Gordon Davison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Gordon Davison', 18)}}的其他基金
Sensory-motor strategies for odor-guided navigation
气味引导导航的感觉运动策略
- 批准号:
10531982 - 财政年份:2022
- 资助金额:
$ 23.9万 - 项目类别:
Neural circuits for regulating social behavior in rodents
调节啮齿动物社会行为的神经回路
- 批准号:
10350553 - 财政年份:2019
- 资助金额:
$ 23.9万 - 项目类别:
Neural circuits for regulating social behavior in rodents
调节啮齿动物社会行为的神经回路
- 批准号:
10088434 - 财政年份:2019
- 资助金额:
$ 23.9万 - 项目类别:
Neural circuits for regulating social behavior in rodents
调节啮齿动物社会行为的神经回路
- 批准号:
10571869 - 财政年份:2019
- 资助金额:
$ 23.9万 - 项目类别:
Synaptic and Circuit Mechanisms of Pheromonal Learning
信息素学习的突触和回路机制
- 批准号:
8796711 - 财政年份:2014
- 资助金额:
$ 23.9万 - 项目类别:
Synaptic and Circuit Mechanisms of Pheromonal Learning
信息素学习的突触和回路机制
- 批准号:
8684474 - 财政年份:2014
- 资助金额:
$ 23.9万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10107115 - 财政年份:2024
- 资助金额:
$ 23.9万 - 项目类别:
Small Business Research Initiative
A large cross-disorder study of premorbid estimated intelligence and structural brain imaging in psychiatric disorders
精神疾病病前估计智力和结构脑成像的大型跨疾病研究
- 批准号:
23K07001 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cognitive and brain imaging correlates of apathy- components in asymptomatic middle aged individuals at high ADRD- risk
认知和脑成像与 ADRD 高风险无症状中年个体的冷漠成分相关
- 批准号:
10875019 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Age-related hearing impairment and brain reserve using brain imaging analysis
使用脑成像分析与年龄相关的听力障碍和大脑储备
- 批准号:
23K16666 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying genetics and brain imaging-based biomarkers of neuron-type specific vulnerability in late life
识别晚年神经元类型特定脆弱性的基于遗传学和脑成像的生物标志物
- 批准号:
490288 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Operating Grants
NexGen 7T MRI scanner for mesoscale brain imaging: Integration and Dissemination
用于中尺度脑成像的 NexGen 7T MRI 扫描仪:整合与传播
- 批准号:
10725586 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Transcranial Whole Brain Imaging by Microwave-induced Thermoacoustics
微波诱导热声学经颅全脑成像
- 批准号:
23H03754 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10083773 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:
Small Business Research Initiative
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 23.9万 - 项目类别:














{{item.name}}会员




