Structure/Function of Microbial Sensory Rhodopsins
微生物感觉视紫红质的结构/功能
基本信息
- 批准号:9036392
- 负责人:
- 金额:$ 62.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1980
- 资助国家:美国
- 起止时间:1980-04-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgaeAnimalsArchaeaAutomobile DrivingBacteriaBacteriorhodopsinsBasic ScienceBindingBiomedical ResearchBirthCalcium ChannelCationsCell membraneCellsChemicalsChlamydomonas reinhardtiiClinicalComplexConflict (Psychology)CytoplasmDataDevelopmentEukaryotaEventEvolutionExhibitsFigs - dietaryGenetic TechniquesGoalsHealthHumanHydrogenHydrogen BondingIn VitroInvestigational TherapiesIonsKnowledgeLifeLightMammalian CellMapsMeasurementMeasuresMediatingMembraneMembrane PotentialsMembrane ProteinsMicroRNAsMicrobial RhodopsinsMolecularMolecular ConformationMolecular StructureMonitorMusMutagenesisNeuronsOocytesOpticsPhototransductionPlayProcessProkaryotic CellsPropertyProteinsProton PumpProtonsResearchResolutionRetinalRetinal PigmentsRhodopsinRoentgen RaysRoleSamplingScaffolding ProteinSchiff BasesSensorySensory RhodopsinsSideSignal PathwaySignal TransductionSiteSpectroscopy, Fourier Transform InfraredSpectrum AnalysisStructureSystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTransducersVesicleVisionbaseblindbrain tissuechromophoreconformerdesignin vivointerestlight gatedlight intensitymicrobialmicroorganismmultidisciplinarymutantnervous system disordernew technologyoptogeneticsprotein functionprotein protein interactionreceptorresearch studyrestorationsensorsensory rhodopsin Itooltranscriptometransmission processuptake
项目摘要
DESCRIPTION (provided by applicant): Microbial sensory rhodopsins, membrane-embedded 7-helix light-sensors widespread among prokaryotes and unicellular eukaryotes, are remarkably diverse in their signaling mechanisms. In archaea and bacteria they mediate phototaxis by protein-protein interaction in membrane-embedded receptor-transducer (SR-Htr) complexes. In contrast, homologous sensory rhodopsins in algae, channelrhodopsins (ChRs), mediate phototaxis by depolarizing the algal plasma membrane. The advantages provided by light activation, namely temporal precision and spectroscopic tools, have made microbial rhodopsins paradigm systems for membrane protein function and for understanding how evolution modifies existing protein scaffolds to create new protein functions. In addition to their basic science interest, sensory rhodopsins have given birth to a new technology, optogenetics, which uses ChRs to control membrane potential in animal cells, enabling light-triggered neuron firing. ChRs have become widely used research tools in neurological disease research and offer promise as therapeutic agents. Our goal is to elucidate the underlying principles of microbial sensory rhodopsin mechanisms at the level of atomic structure/molecular function. We have established that the rhodopsin subunits of SR-Htr complexes, and provide evidence that ChRs as well, share the same light-induced conversion between two conformers with light-driven rhodopsin proton pumps. However, sensory rhodopsins have evolved new chemical processes, not found in their proton pump ancestors, to alter the consequences of the conformational change. Experiments are designed to: 1) determine the first atomic-resolution X-ray crystal structure of the elusive transient light-induced conformer of microbial rhodopsins by exploiting our recent finding of conditions in which this conformer exists as a stable form in the dark in the attractant
receptor SRI- HtrI complex; 2) to elucidate in the repellent receptor SRII the interplay between the conformer transition and a steric trigger during photoisomerization of retinal that together comprise the intramolecular pathway of signal transfer to HtrII; 3) to apply our knowledge of SRI and SRII and multidisciplinary tools to the ChRs. The channel activity of ChRs has been detected and investigated exclusively by photoelectric measurements in living algae or animal cells, at concentrations of ChRs not amenable to optical or molecular spectroscopy. We propose to develop an in vitro system for light-gated channel activity of purified ChRs and elucidate the protein's phototransduction mechanism. A final aim follows from our studies of phototaxis in algae which establish that ChR-mediated depolarizing currents are amplified ~1000-fold compared to their activity in heterologous systems, e.g. neurons. We propose a strategy to identify the amplification component(s) and test our hypothesis that non-voltage-gated Ca2+ channels are directly activated by physical interaction with ChRs in the algae. In addition to answering basic mechanistic questions, these experiments have the potential for major impact on optogenetics, enhancing use of this technology in research and enabling therapeutic applications.
描述(由申请人提供):微生物感觉视紫红质是一种广泛存在于原核生物和单细胞真核生物中的膜包埋7-螺旋光传感器,其信号传导机制非常多样。在古细菌和细菌中,它们通过膜包埋受体-换能器(SR-Htr)复合物中的蛋白质-蛋白质相互作用介导趋光性。相反,藻类中的同源感觉视紫红质,通道视紫红质(ChRs),介导趋光性通过去极化藻类质膜。光激活提供的优势,即时间精度和光谱工具,使微生物视紫红质范式系统膜蛋白功能和理解如何进化修改现有的蛋白质支架,创造新的蛋白质功能。除了它们的基本科学兴趣之外,感觉视紫红质还产生了一种新技术,即光遗传学,它使用ChRs来控制动物细胞的膜电位,从而实现光触发神经元放电。ChR已成为神经系统疾病研究中广泛使用的研究工具,并提供作为治疗剂的前景。我们的目标是在原子结构/分子功能水平上阐明微生物感觉视紫红质机制的基本原理。我们已经建立了SR-Htr复合物的视紫红质亚基,并提供证据表明,ChRs以及,共享光驱动的视紫红质质子泵的两个构象之间的相同的光诱导转换。然而,感觉视紫红质已经进化出新的化学过程,在它们的质子泵祖先中没有发现,以改变构象变化的结果。实验旨在:1)通过利用我们最近发现的条件,确定微生物视紫红质的难以捉摸的瞬态光诱导构象的第一原子分辨率X射线晶体结构,其中该构象在黑暗中以稳定形式存在于引诱剂中。
受体SRI-HtrI复合物; 2)阐明在驱避剂受体SRII中构象转换和在视黄醛的光异构化期间的空间触发之间的相互作用,构象转换和空间触发一起构成信号传递到HtrII的分子内途径; 3)将我们对SRI和SRII的知识以及多学科工具应用于ChR。通道活动的ChRs已被检测和研究专门通过光电测量在活的藻类或动物细胞,在浓度的ChRs不服从光学或分子光谱。我们建议开发一个体外系统的光门控通道活性的纯化的ChRs和阐明蛋白质的光转导机制。最后一个目标来自于我们对藻类趋光性的研究,该研究确定了ChR介导的去极化电流与其在异源系统(例如神经元)中的活性相比放大了约1000倍。我们提出了一种策略来识别放大成分并测试我们的假设,即非电压门控Ca 2+通道通过与藻类中ChR的物理相互作用直接激活。除了回答基本的机制问题外,这些实验还可能对光遗传学产生重大影响,增强该技术在研究中的应用并实现治疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10166003 - 财政年份:2021
- 资助金额:
$ 62.56万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 62.56万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 62.56万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 62.56万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 62.56万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
$ 62.56万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8359246 - 财政年份:2012
- 资助金额:
$ 62.56万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 62.56万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 62.56万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 62.56万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 62.56万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 62.56万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 62.56万 - 项目类别:
Training Grant