Linear algebra and group representation theory

线性代数和群表示论

基本信息

  • 批准号:
    298261-2004
  • 负责人:
  • 金额:
    $ 0.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2005
  • 资助国家:
    加拿大
  • 起止时间:
    2005-01-01 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Szechtman, Fernando其他文献

Szechtman, Fernando的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Szechtman, Fernando', 18)}}的其他基金

Indecomposable Lie algebra representations
不可分解的李代数表示
  • 批准号:
    RGPIN-2020-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Indecomposable Lie algebra representations
不可分解的李代数表示
  • 批准号:
    RGPIN-2020-04062
  • 财政年份:
    2021
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Indecomposable Lie algebra representations
不可分解的李代数表示
  • 批准号:
    RGPIN-2020-04062
  • 财政年份:
    2020
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Representation Theory
表征论
  • 批准号:
    RGPIN-2014-06255
  • 财政年份:
    2019
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Representation Theory
表征论
  • 批准号:
    RGPIN-2014-06255
  • 财政年份:
    2017
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Representation Theory
表征论
  • 批准号:
    RGPIN-2014-06255
  • 财政年份:
    2016
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Representation Theory
表征论
  • 批准号:
    RGPIN-2014-06255
  • 财政年份:
    2015
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Representation Theory
表征论
  • 批准号:
    RGPIN-2014-06255
  • 财政年份:
    2014
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
The Steinberg representation and its modular reduction
斯坦伯格表示及其模简化
  • 批准号:
    298261-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
The Steinberg representation and its modular reduction
斯坦伯格表示及其模简化
  • 批准号:
    298261-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tensor decomposition methods for multi-omics immunology data analysis
用于多组学免疫学数据分析的张量分解方法
  • 批准号:
    10655726
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
The Lie algebra of derivations of a block of a finite group
有限群块导数的李代数
  • 批准号:
    EP/X035328/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Research Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
  • 批准号:
    RGPIN-2017-05732
  • 财政年份:
    2022
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Studying generalised Thompson's group with tools from geometric group theory and operator algebra
使用几何群论和算子代数的工具研究广义汤普森群
  • 批准号:
    EP/W007371/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Research Grant
The Modular Group Action and the Virasoro Algebra
模块化群动作和 Virasoro 代数
  • 批准号:
    563799-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Technology and Computational Core
技术与计算核心
  • 批准号:
    10328118
  • 财政年份:
    2021
  • 资助金额:
    $ 0.66万
  • 项目类别:
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
  • 批准号:
    RGPIN-2017-05732
  • 财政年份:
    2021
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
  • 批准号:
    RGPIN-2017-05732
  • 财政年份:
    2020
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of the theory of group schemes, especially on Lucas sequences and on the normal basis problem
群方案理论的应用,特别是在卢卡斯序列和正规基问题上的应用
  • 批准号:
    19K03408
  • 财政年份:
    2019
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了