High-order accurate adaptive numerical methods for fluid mechanics using unstructured meshes
使用非结构化网格的流体力学高阶精确自适应数值方法
基本信息
- 批准号:194467-2006
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For the results of computational fluid dynamics (CFD) simulations of complex flows to be useful in an engineering design context, the simulation software (solver) must produce accurate solutions efficiently and robustly while minimizing the human time to set up a simulation. To address these issues, my research group has developed high-order accurate solution techniques for unstructured meshes. Our results and those of others consistently show that a flow solution of the same accuracy can be obtained more quickly using high-order methods. My group's long-term goal is to bring the benefits of high-order methods from the research level to industrial usability. In the near term, we will emphasize application of high-order methods to configuration aerodynamics, aerodynamic optimization, and fluids-structures interaction. To enable these applications in the context of high-order methods, we will extend existing second-order techniques or develop new techniques for viscous mesh generation, mesh adaptation, and solution of adjoint problems. The key issue in viscous mesh generation for high-order discretization schemes is the accurate representation of curved surfaces, including creation of mesh cells with curved sides to avoid inverted cells at the wall. We have already made significant progress on curved-boundary meshing, and expect to build on that in the viscous meshing work. High-order mesh adaptation procedures will require the development of new error indicators, as the second derivatives commonly used by second-order adaptive methods are already captured by a high-order solver. We will investigate the use of higher-order derivatives as directional error indicators, and perform mesh adaptation to control error effectively. My group's early efforts in optimization for high-order methods were stymied by difficulties in computing sufficiently accurate gradients. High-order solution of adjoint problems should provide the required gradients, and also have application in computing solution error bounds.
为了使复杂流动的计算流体动力学(CFD)模拟结果在工程设计环境中有用,仿真软件(求解器)必须高效、鲁棒地生成准确的解,同时最大限度地减少人类设置模拟的时间。为了解决这些问题,我的研究小组开发了非结构化网格的高阶精确解决技术。我们的结果和其他人的结果一致表明,使用高阶方法可以更快地获得相同精度的流解。我的团队的长期目标是将高阶方法的好处从研究层面带到工业可用性。在短期内,我们将强调高阶方法在构型空气动力学、空气动力学优化和流固耦合中的应用。为了在高阶方法的背景下实现这些应用,我们将扩展现有的二阶技术或开发用于粘性网格生成、网格自适应和伴随问题解决的新技术。高阶离散化方案的粘性网格生成的关键问题是曲面的精确表示,包括创建具有弯曲边的网格单元,以避免在壁面上倒置的网格单元。我们已经在曲面边界网格划分方面取得了重大进展,并期望在此基础上进一步开展粘滞网格划分工作。高阶网格自适应程序将需要开发新的误差指标,因为二阶自适应方法常用的二阶导数已经被高阶求解器捕获。我们将研究使用高阶导数作为方向误差指标,并执行网格自适应来有效地控制误差。我的团队在高阶方法优化方面的早期努力,因难以计算足够精确的梯度而受阻。伴随问题的高阶解既要提供所需的梯度,又要在解的误差界计算中有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OllivierGooch, Carl其他文献
OllivierGooch, Carl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OllivierGooch, Carl', 18)}}的其他基金
Accurate, Robust Simulations of Aerodynamics Flows, Especially Wakes and Shocks
准确、稳健的空气动力学流动模拟,尤其是尾流和冲击
- 批准号:
RGPIN-2020-04503 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Collaborative Research and Development Grants
Accurate, Robust Simulations of Aerodynamics Flows, Especially Wakes and Shocks
准确、稳健的空气动力学流动模拟,尤其是尾流和冲击
- 批准号:
RGPIN-2020-04503 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Collaborative Research and Development Grants
Accurate, Robust Simulations of Aerodynamics Flows, Especially Wakes and Shocks
准确、稳健的空气动力学流动模拟,尤其是尾流和冲击
- 批准号:
RGPIN-2020-04503 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Efficient simulation of lift-drag polars for high-lift airfoils
高升力翼型升力-阻力极坐标的高效模拟
- 批准号:
542646-2019 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Engage Grants Program
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
- 批准号:
537052-2018 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Collaborative Research and Development Grants
Numerical Simulation of Aircraft Aerodynamics with Error Quantification
带有误差量化的飞机空气动力学数值模拟
- 批准号:
RGPIN-2015-04005 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Numerical Simulation of Aircraft Aerodynamics with Error Quantification
带有误差量化的飞机空气动力学数值模拟
- 批准号:
RGPIN-2015-04005 - 财政年份:2018
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Improvements to Unstructured Mesh Finite Volume Methods for CFD: Novel Adaptive Techniques and Improved Robustness
CFD 非结构化网格有限体积方法的改进:新颖的自适应技术和改进的鲁棒性
- 批准号:
487154-2015 - 财政年份:2018
- 资助金额:
$ 2万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
非定常复杂流场的时空高精度高效率新格式的研究
- 批准号:50376004
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
- 批准号:
24K20903 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
- 批准号:
10670648 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Physics-constrained adaptive learning for multi-physics optimization: Time-accurate prediction of chaotic and turbulent flows
用于多物理优化的物理约束自适应学习:混沌流和湍流的时间精确预测
- 批准号:
2606505 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Studentship
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
DGDND-2019-06758 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
RGPIN-2019-06758 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
- 批准号:
DGDND-2019-06758 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Inducing and Exploiting Grid Structures for Fast, Adaptive, and Accurate Estimation
引入和利用网格结构进行快速、自适应和准确的估计
- 批准号:
1953111 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Standard Grant