Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
基本信息
- 批准号:341366-2007
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2011
- 资助国家:加拿大
- 起止时间:2011-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Can we design an artificial intelligence system that, once plunged in an unknown world, like a newborn baby opening his eyes for the first time, would be able to form high level concepts exclusively from the enormous quantity of raw sensory information that it receives? Such a system should be able to discover deep regularities and stable structures in this ever changing information stream, so that it may eventually form its own subjective notions of space, time, of things (more or less stable entities) moving around. This research program aims at exploring new fundamental principles to guide the building of next generation autonomous learning systems with this kind of abilities. Our approach will be based on computer implementations capable of growing "layers of understanding", stacked one upon the other. Each such layer shall be building a slightly higher level "understanding" of the representation extracted by the previous one, by exploiting regularities that the previous layer failed to capture. We intend to focus on a particular class of regularities called "invariant transformations", that we want to automatically discover and learn. The layer by layer extraction of ever higher level, ever more meaning carrying representations, is expected to be a key element for opening the door to near human-level performance in artificial learning systems (thus advancing the state-of-the-art in the fields of machine learning, pattern recognition and data mining). It is also expected to produce computerized systems capable of far more accurate predictions from past observed data. This would have direct technological applications in a wide range of fields where superior prediction systems are immensely useful: from engineering to finance, from business decision making to medicine.
我们能否设计一个人工智能系统,一旦陷入未知的世界,就像新生婴儿第一次睁开眼睛一样,能够完全从它接收到的大量原始感官信息中形成高级概念?这样的系统应该能够在不断变化的信息流中发现深层的规律性和稳定的结构,以便最终形成自己的空间、时间、移动的事物(或多或少稳定的实体)的主观概念。该研究计划旨在探索新的基本原理,以指导构建具有这种能力的下一代自主学习系统。我们的方法将基于能够增长“理解层”的计算机实现,一层一层地堆叠起来。每个这样的层都应该通过利用前一层未能捕获的规律来构建对前一层提取的表示的稍微更高级别的“理解”。我们打算关注一类称为“不变变换”的特定规律,我们希望自动发现和学习它。层层提取更高层次、更多意义的表征,预计将成为人工学习系统接近人类水平性能之门的关键要素(从而推进机器学习、模式识别和数据挖掘领域的最先进技术)。它还有望生产出能够根据过去观察到的数据进行更准确预测的计算机化系统。这将在众多领域产生直接的技术应用,在这些领域中,高级预测系统非常有用:从工程到金融,从商业决策到医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent, Pascal其他文献
All field emission models are wrong, horizontal ellipsis but are any of them useful?
- DOI:
10.1116/6.0001677 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:1.4
- 作者:
Ayari, Anthony;Vincent, Pascal;Purcell, Stephen T. - 通讯作者:
Purcell, Stephen T.
Sudden onset of pseudotuberculosis in humans, France, 2004-05
- DOI:
10.3201/eid1407.071339 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:11.8
- 作者:
Vincent, Pascal;Leclercq, Alexandre;Carniel, Elisabeth - 通讯作者:
Carniel, Elisabeth
Quickly Generating Representative Samples from an RBM-Derived Process
- DOI:
10.1162/neco_a_00158 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:2.9
- 作者:
Breuleux, Olivier;Bengio, Yoshua;Vincent, Pascal - 通讯作者:
Vincent, Pascal
Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori
- DOI:
10.1007/s12602-009-9029-4 - 发表时间:
2010-03-01 - 期刊:
- 影响因子:4.9
- 作者:
De Vuyst, Luc;Vincent, Pascal;Pot, Bruno - 通讯作者:
Pot, Bruno
Vincent, Pascal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent, Pascal', 18)}}的其他基金
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning representations of players' emotions and state for next generation gaming
学习下一代游戏的玩家情绪和状态的表征
- 批准号:
447414-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research and Development Grants
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning representations of players' emotions and state for next generation gaming
学习下一代游戏的玩家情绪和状态的表征
- 批准号:
447414-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research and Development Grants
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning representations of players' emotions and state for next generation gaming
学习下一代游戏的玩家情绪和状态的表征
- 批准号:
447414-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research and Development Grants
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Apprendre à miser dans des enchères publicitaires pour la publicité internet
互联网宣传中的应用程序和守财奴
- 批准号:
417426-2011 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
相似国自然基金
Higher Teichmüller理论中若干控制型问题的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
A programming learning environment that encourages higher-level verbalization activities
鼓励更高水平语言活动的编程学习环境
- 批准号:
22K12319 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Neural Substrates of Higher-Level Learning in Autism
自闭症高级学习的神经基础
- 批准号:
8426620 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
The Neural Substrates of Higher-Level Learning in Autism
自闭症高级学习的神经基础
- 批准号:
8545902 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
TUES: Use of Video Production to Promote Collaborative Learning and Higher Level Cognitive Understanding in an Introductory Life Science Curriculum
TUES:使用视频制作来促进生命科学入门课程中的协作学习和更高水平的认知理解
- 批准号:
1140951 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
A Case Study on the Organization Issues in the e-Learning Program at the Higher Education Level
高等教育电子学习项目组织问题的案例研究
- 批准号:
21800060 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2008
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2007
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




