Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
基本信息
- 批准号:341366-2013
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automating intelligent decision taking is easy once starting from the right, high-level representation of relevant information. But sensory input, whether biological (e.g. information relayed by eye and optic nerve, or ear) or electronic (e.g. digital camera or sound recording) start from a very large low-level representation (e.g. millions of pixel intensities) where any potentially relevant information for decision making is hidden, awfully diffuse and scrambled. A fundamental challenge is thus to develop approaches that are able to discover and exploit the hidden statistical regularities in data to learn to produce useful higher level representations from low level ones. In this research program I will leverage a geometric characterization of such statistical regularities in order to develop novel techniques able to extract meaningful representations. Significant progress on this objective could constitute a breakthrough in elucidating one of the key mechanisms of intelligence. It will translate into better artificial perception (vision, audition) systems, lift artificial intelligence capabilities closer to human capabilities, and take to the next level the fundamental science and capabilities of algorithm that underly many modern technological successes such as the Google search engine, the Siri intelligent personal agent, or the self-driving car.
一旦从相关信息的正确、高级表示开始,自动化智能决策就变得很容易。但感觉输入,无论是生物输入(例如,通过眼睛和视神经或耳朵传递的信息)还是电子输入(例如数码相机或录音),都是从非常大的低级表示(例如数百万像素强度)开始的,其中任何与决策相关的潜在相关信息都被隐藏、极其分散和混乱。因此,一个根本的挑战是开发能够发现和利用数据中隐藏的统计规律的方法,以学习从低级表示生成有用的高级表示。在这个研究项目中,我将利用这种统计规律的几何特征来开发能够提取有意义的表示的新技术。这一目标的重大进展可能会成为阐明情报关键机制之一的突破。它将转化为更好的人工感知(视觉、听觉)系统,使人工智能能力更接近人类能力,并将谷歌搜索引擎、Siri智能个人代理或自动驾驶汽车等许多现代技术成功的基础科学和算法能力提升到一个新的水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent, Pascal其他文献
All field emission models are wrong, horizontal ellipsis but are any of them useful?
- DOI:
10.1116/6.0001677 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:1.4
- 作者:
Ayari, Anthony;Vincent, Pascal;Purcell, Stephen T. - 通讯作者:
Purcell, Stephen T.
Sudden onset of pseudotuberculosis in humans, France, 2004-05
- DOI:
10.3201/eid1407.071339 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:11.8
- 作者:
Vincent, Pascal;Leclercq, Alexandre;Carniel, Elisabeth - 通讯作者:
Carniel, Elisabeth
Quickly Generating Representative Samples from an RBM-Derived Process
- DOI:
10.1162/neco_a_00158 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:2.9
- 作者:
Breuleux, Olivier;Bengio, Yoshua;Vincent, Pascal - 通讯作者:
Vincent, Pascal
Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori
- DOI:
10.1007/s12602-009-9029-4 - 发表时间:
2010-03-01 - 期刊:
- 影响因子:4.9
- 作者:
De Vuyst, Luc;Vincent, Pascal;Pot, Bruno - 通讯作者:
Pot, Bruno
Vincent, Pascal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent, Pascal', 18)}}的其他基金
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Learning representations of players' emotions and state for next generation gaming
学习下一代游戏的玩家情绪和状态的表征
- 批准号:
447414-2013 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Learning representations of players' emotions and state for next generation gaming
学习下一代游戏的玩家情绪和状态的表征
- 批准号:
447414-2013 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Learning representations of players' emotions and state for next generation gaming
学习下一代游戏的玩家情绪和状态的表征
- 批准号:
447414-2013 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Leveraging the manifold hypothesis for learning representations in deep neural networks
利用流形假设学习深度神经网络中的表示
- 批准号:
341366-2013 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Apprendre à miser dans des enchères publicitaires pour la publicité internet
互联网宣传中的应用程序和守财奴
- 批准号:
417426-2011 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Learning higher level representations and invariant transformations
学习更高层次的表示和不变变换
- 批准号:
341366-2007 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于高速可重构匹配网络的VHF宽带多路跳频Manifold耦合器基础问题研究
- 批准号:61001012
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
辛几何中的开“格罗莫夫-威腾”不变量
- 批准号:10901084
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
类环体流形和小覆盖流形的拓扑与组合
- 批准号:10826040
- 批准年份:2008
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
- 批准号:
2306278 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Testing the High-Pressure Manifold Model of Phloem Transport and Unloading
韧皮部运输和卸载的高压流管模型的测试
- 批准号:
2318280 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Statistical models for the integrative analysis of complex biomedical images with manifold structure
具有流形结构的复杂生物医学图像综合分析的统计模型
- 批准号:
10590469 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Development of learning subspace-based methods for pattern recognition
基于学习子空间的模式识别方法的开发
- 批准号:
22K17960 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Statistical Analysis on Geometric Manifold and its Application to Data Science
几何流形统计分析及其在数据科学中的应用
- 批准号:
22K11944 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Signal Processing Techniques on a Riemannian Manifold
黎曼流形上的先进信号处理技术
- 批准号:
RGPIN-2019-05415 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




