Generalized complex and Kähler geometry

广义复几何和凯勒几何

基本信息

  • 批准号:
    355576-2008
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2011
  • 资助国家:
    加拿大
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

Generalized complex geometry is a unified approach to two separate fields: Symplectic geometry, used for classical mechanics, and Complex geometry, used for studying the behaviour of algebraic equations in arbitrary dimension. Besides unifying these two clasically separate disciplines, it also includes a family of intermediate geometries which are wholly new. These geometries turn out to provide alternative backgrounds for quantum field theories called "Flux compactifications", and hence are relevant to high-energy physics. The proposal has three related aims. First, to study the theoretical properties of these intermediate generalized complex structures, to form a more complete understanding of their intrinsic nature. Second, to pursue constructions of many examples of these intermediate geometrical structures. Lastly, to strengthen connections between generalized complex geometry and other fields of mathematics, such as Poisson geometry, geometry of 4-manifolds, and non-commutative geometry.
广义复几何是两个独立领域的统一方法:用于经典力学的辛几何和用于研究任意维代数方程行为的复几何。 除了统一这两个经典上独立的学科,它还包括一个家庭的中间几何是全新的。 这些几何为量子场论提供了另一种背景,称为“通量紧致化”,因此与高能物理学有关。 该提案有三个相关的目标。首先,研究这些中间广义复结构的理论性质,形成对其内在本质的更完整的认识。第二,追求这些中间几何结构的许多例子的构造。 最后,加强广义复几何与其他数学领域的联系,如泊松几何、四维流形几何和非交换几何。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gualtieri, Marco其他文献

Gualtieri, Marco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gualtieri, Marco', 18)}}的其他基金

Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Holomorphic and quantum aspects of generalized Kahler geometry
广义卡勒几何的全纯和量子方面
  • 批准号:
    355576-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Holomorphic and quantum aspects of generalized Kahler geometry
广义卡勒几何的全纯和量子方面
  • 批准号:
    355576-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Holomorphic and quantum aspects of generalized Kahler geometry
广义卡勒几何的全纯和量子方面
  • 批准号:
    446222-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Holomorphic and quantum aspects of generalized Kahler geometry
广义卡勒几何的全纯和量子方面
  • 批准号:
    355576-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Holomorphic and quantum aspects of generalized Kahler geometry
广义卡勒几何的全纯和量子方面
  • 批准号:
    446222-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
  • 批准号:
    32370337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
  • 批准号:
    92054103
  • 批准年份:
    2020
  • 资助金额:
    87.0 万元
  • 项目类别:
    重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
  • 批准号:
    31970693
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
  • 批准号:
    31970656
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
  • 批准号:
    31971330
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
  • 批准号:
    31971055
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
  • 批准号:
    31872651
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
  • 批准号:
    31871394
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
CAREER: New Pericyclic Methodologies for the Convergent Synthesis of Complex Ring Systems
职业:复杂环系收敛合成的新周环方法
  • 批准号:
    2340210
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
  • 批准号:
    2340926
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了