Oppostition-based evolutionary algorithms: toward solving high-dimensional optimization problems efficiently

基于对立的进化算法:高效解决高维优化问题

基本信息

项目摘要

Modeling of a scientific or engineering problem often leads to an optimization problem. Optimization provides a formal basis for decision making in a wide variety of applications, ranging from engineering design to service oriented applications such as healthcare, finance, and transportation. In this proposal, Evolutionary Algorithms (EAs) will be investigated to solve those optimization problems, which are otherwise difficult or impossible to solve by classical methods. Solving problems with mixed-type variables, dynamic environments, multi-objective constrained functions, and non-analytical functions are examples that highlight the outstanding capabilities of EAs. But currently, EAs are computationally expensive because of their evolutionary nature. Furthermore, EAs suffer from the problem of dimensionality. This means that their performance deteriorates quickly as the dimensionality of the search space increases. Rapid solutions of the problems are highly desirable during research and design processes. As a consequence, acceleration of EAs is a significant issue of importance for the scientific community to solve large-scale problems in a smaller time interval. This research develops new acceleration schemes for EAs, and also smart sampling methods, which are needed particularly for high-dimensional problems. Combining these proposed schemes and sampling methods would result in more efficient and robust approaches to accelerate well-known evolutionary algorithms and effectively solve high-dimensional problems. Reduction of function evaluations for time-consuming optimization problems is highly demanding. Solving high-dimensional expensive optimization problems is a challenging research area. This proposal aims to make significant contributions to this field. It would provide a very good training environment for highly qualified personnel, who can become Canada's future leaders and pioneering researchers in optimization techniques for applications in science and engineering. These applications depend on successfully finding optimum values for a hundred parameters during design of a product or solving a scientific problem.
科学或工程问题的建模通常会导致优化问题。优化为各种各样的应用程序(从工程设计到面向服务的应用程序,如医疗保健、金融和交通)中的决策制定提供了正式的基础。在本提案中,进化算法(EAs)将被研究,以解决这些优化问题,否则难以或不可能解决的经典方法。解决混合变量、动态环境、多目标约束函数和非分析函数的问题是ea突出能力的例子。但是目前,ea由于其进化性质,在计算上是昂贵的。此外,ea还存在维度问题。这意味着随着搜索空间维数的增加,它们的性能会迅速下降。在研究和设计过程中,快速解决问题是非常可取的。因此,ea的加速是科学界在更短的时间间隔内解决大规模问题的一个重要问题。本研究开发了新的ea加速方案,以及高维问题特别需要的智能采样方法。将这些方案和采样方法结合起来,将产生更有效和鲁棒的方法来加速已知的进化算法并有效地解决高维问题。对于耗时的优化问题,对函数求值的简化要求很高。求解高维昂贵优化问题是一个具有挑战性的研究领域。这一建议旨在对这一领域作出重大贡献。它将为高素质人才提供一个非常好的培训环境,他们可以成为加拿大未来在科学和工程应用优化技术方面的领导者和先驱研究人员。这些应用依赖于在产品设计或解决科学问题期间成功地找到100个参数的最佳值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahnamayan, Shahryar其他文献

Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology
  • DOI:
    10.1016/j.artmed.2022.102368
  • 发表时间:
    2022-08-02
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Bidgoli, Azam Asilian;Rahnamayan, Shahryar;Tizhoosh, H. R.
  • 通讯作者:
    Tizhoosh, H. R.
Bias reduction in representation of histopathology images using deep feature selection.
  • DOI:
    10.1038/s41598-022-24317-z
  • 发表时间:
    2022-11-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Bidgoli, Azam Asilian;Rahnamayan, Shahryar;Dehkharghanian, Taher;Grami, Ali;Tizhoosh, H. R.
  • 通讯作者:
    Tizhoosh, H. R.
Opposition-based differential evolution
  • DOI:
    10.1109/tevc.2007.894200
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    14.3
  • 作者:
    Rahnamayan, Shahryar;Tizhoosh, Hamid R.;Salama, Magdy M. A.
  • 通讯作者:
    Salama, Magdy M. A.
A novel binary many-objective feature selection algorithm for multi-label data classification
Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
用于解决高维连续优化问题的增强型基于反对派的差分进化
  • DOI:
    10.1007/s00500-010-0642-7
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wang, Hui;Wu, Zhijian;Rahnamayan, Shahryar
  • 通讯作者:
    Rahnamayan, Shahryar

Rahnamayan, Shahryar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahnamayan, Shahryar', 18)}}的其他基金

Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Snoring Event Detection Using Machine Learning Techniques
使用机器学习技术检测打鼾事件
  • 批准号:
    531015-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Oppostition-based evolutionary algorithms: toward solving high-dimensional optimization problems efficiently
基于对立的进化算法:高效解决高维优化问题
  • 批准号:
    371992-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deciphering activation and evolutionary mechanisms of the paired NLR immune receptors based on paralog suppression and neofunctionalization
基于旁系同源抑制和新功能化,破译配对 NLR 免疫受体的激活和进化机制
  • 批准号:
    23H02213
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evolutionary process toward endothermy in Dinosauria elucidated based on nasal structures
基于鼻结构阐明恐龙的吸热进化过程
  • 批准号:
    22KJ0808
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Evolutionary study of primate olfaction, taste and color-vision sensor genes by targeted capture and cell-culture-based functional assay
通过靶向捕获和基于细胞培养的功能测定对灵长类动物嗅觉、味觉和色觉传感器基因的进化研究
  • 批准号:
    23H02561
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular control of chondrocyte hypertrophy: an evolutionary approach
软骨细胞肥大的分子控制:一种进化方法
  • 批准号:
    10606678
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Building the framework of controlling a pandemic based on mathematical epidemiology and evolutionary game theory
基于数学流行病学和进化博弈论构建疫情控制框架
  • 批准号:
    22KF0303
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Revealing evolutionary process of animal adaptation into dark environments: an approach based on sensory organs of fossilized insects
揭示动物适应黑暗环境的进化过程:基于昆虫化石感觉器官的方法
  • 批准号:
    22KJ0139
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the evolutionary process of fossil hominins foot structure based on a virtual evolutionary approach
基于虚拟进化方法阐明古人类足部结构化石的进化过程
  • 批准号:
    23K14276
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evolutionary origins of the stratum corneum of the skin epidermis based on molecular characterization of water
基于水的分子表征的皮肤表皮角质层的进化起源
  • 批准号:
    22H03097
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of evolutionary and molecular basis of animal special functions based on genome information and its application to highly functional sensors
基于基因组信息阐明动物特殊功能的进化和分子基础及其在高功能传感器中的应用
  • 批准号:
    22K19097
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Evolutionary Multiobjective Optimization Algorithms and Benchmark Problem Design based on the Analysis of Real-world Problems
基于实际问题分析的进化多目标优化算法和基准问题设计的开发
  • 批准号:
    22H03664
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了