Efficient Evolutionary Algorithms for Many-objective Optimization

多目标优化的高效进化算法

基本信息

  • 批准号:
    RGPIN-2015-03651
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Most of the time, when we are talking about an improvement of something, in fact, we are interested to minimize or maximize (i.e. optimize) quality or quantity of an entity. Universal examples are maximization of reliability, efficiency, safety, and benefit; or minimization of the pollution, risk, consumed energy, or production time/cost. Now, it is clear why the fingerprint of the optimization is visible in all science and engineering fields, ranging from healthcare to astronomy. In this direction, nature-inspired problem solving methods play a crucial role to efficiently solve complex real-world problems. Evolutionary Algorithms (EAs) are well-known examples inspired from the genetic biology; they employ biological operations such as selection, crossover, and mutation. EAs are pioneers tackling problems which are hard or even impossible to be solved by the conventional methods. For majority of our practical problems, we are faced with two or more (multi) conflicting objectives to optimize simultaneously; such as minimizing cost and maximizing efficiency for a system. The current successful evolutionary multi-objective algorithms have focused on problems with two or three objectives. However, recently, we face with problems which consist of more than three objectives (called many-objective). EAs have demonstrated their niche in solving these problems due to the requirement of finding multiple trade-off solutions for these problems. However, having a number of algorithmic restrictions, these methods were shown to be non-scalable to many-objective problems. These kinds of problems present new challenges for algorithm design and visualization which have not been addressed properly. This research program expects training 3 PhD and 3 MSc students by involving them in the cutting-edge research topics. These topics address the existing restrictions by enhancing various correlated aspects, namely, a) designing computationally fast algorithms, b) utilizing decomposition methods for dividing an conquering the original problem, c) designing tailored processing type (i.e., sequential, distributed, and parallel), d) designing simple and intuitive large-scale data visualization techniques (for better understanding and supporting an interactive computation), and e) designing effective performance metrics. The outcomes of the current research will be beneficial for a wide range of research communities and industrial sectors in Canada which utilize optimization by any means in scheduling, control systems, robotics, data mining, circuits design, communications, bioinformatics, image processing, networking, traffic engineering, etc. The applicant's more than ten years' comprehensive experience in evolutionary computation will play a pivotal role in success of this research program.
大多数时候,当我们谈论某个东西的改进时,实际上,我们感兴趣的是最小化或最大化(即优化)实体的质量或数量。普遍的例子是可靠性、效率、安全性和效益的最大化;或污染、风险、消耗的能量或生产时间/成本的最小化。现在,很清楚为什么优化的指纹在所有科学和工程领域都是可见的,从医疗保健到天文学。在这个方向上,自然启发的问题解决方法在有效解决复杂的现实问题方面发挥着至关重要的作用。进化算法(Evolutionary Algorithms,EAs)是一种受遗传生物学启发而产生的算法,它采用了选择、交叉和变异等生物学操作。工程师是解决传统方法难以甚至不可能解决的问题的先驱。对于我们的大多数实际问题,我们面临着两个或多个(多个)冲突的目标,以同时优化;如最小化成本和最大化系统的效率。目前成功的进化多目标算法主要集中在两个或三个目标的问题。然而,近年来,我们面临的问题,包括三个以上的目标(称为多目标)。由于需要为这些问题找到多个折衷解决方案,EA在解决这些问题方面表现出了自己的优势。然而,有一些算法的限制,这些方法被证明是不可扩展的许多目标的问题。这类问题对算法设计和可视化提出了新的挑战,这些问题尚未得到妥善解决。该研究计划预计通过让他们参与前沿研究课题来培养3名博士和3名硕士学生。这些主题通过增强各种相关方面来解决现有的限制,即,a)设计计算上快速的算法,B)利用分解方法来划分和征服原始问题,c)设计定制的处理类型(即,顺序的、分布式的和并行的),d)设计简单和直观的大规模数据可视化技术(用于更好地理解和支持交互式计算),以及e)设计有效的性能度量。目前的研究成果将有利于加拿大广泛的研究社区和工业部门,这些研究社区和工业部门在调度,控制系统,机器人,数据挖掘,电路设计,通信,生物信息学,图像处理,网络,交通工程,申请人在进化计算方面十多年的综合经验将对该研究计划的成功起到关键作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahnamayan, Shahryar其他文献

Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology
  • DOI:
    10.1016/j.artmed.2022.102368
  • 发表时间:
    2022-08-02
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Bidgoli, Azam Asilian;Rahnamayan, Shahryar;Tizhoosh, H. R.
  • 通讯作者:
    Tizhoosh, H. R.
Bias reduction in representation of histopathology images using deep feature selection.
  • DOI:
    10.1038/s41598-022-24317-z
  • 发表时间:
    2022-11-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Bidgoli, Azam Asilian;Rahnamayan, Shahryar;Dehkharghanian, Taher;Grami, Ali;Tizhoosh, H. R.
  • 通讯作者:
    Tizhoosh, H. R.
Opposition-based differential evolution
  • DOI:
    10.1109/tevc.2007.894200
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    14.3
  • 作者:
    Rahnamayan, Shahryar;Tizhoosh, Hamid R.;Salama, Magdy M. A.
  • 通讯作者:
    Salama, Magdy M. A.
A novel binary many-objective feature selection algorithm for multi-label data classification
Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
用于解决高维连续优化问题的增强型基于反对派的差分进化
  • DOI:
    10.1007/s00500-010-0642-7
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wang, Hui;Wu, Zhijian;Rahnamayan, Shahryar
  • 通讯作者:
    Rahnamayan, Shahryar

Rahnamayan, Shahryar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahnamayan, Shahryar', 18)}}的其他基金

Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Snoring Event Detection Using Machine Learning Techniques
使用机器学习技术检测打鼾事件
  • 批准号:
    531015-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Oppostition-based evolutionary algorithms: toward solving high-dimensional optimization problems efficiently
基于对立的进化算法:高效解决高维优化问题
  • 批准号:
    371992-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Oppostition-based evolutionary algorithms: toward solving high-dimensional optimization problems efficiently
基于对立的进化算法:高效解决高维优化问题
  • 批准号:
    371992-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Towards Explainable AI Algorithms via Fitness Landscape Analysis in Evolutionary Computation
通过进化计算中的适应度景观分析实现可解释的人工智能算法
  • 批准号:
    2890959
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Robustness and Evolvability of Evolutionary Algorithms
进化算法的鲁棒性和可进化性
  • 批准号:
    RGPIN-2016-04699
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Evolutionary Multiobjective Optimization Algorithms and Benchmark Problem Design based on the Analysis of Real-world Problems
基于实际问题分析的进化多目标优化算法和基准问题设计的开发
  • 批准号:
    22H03664
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Robustness and Evolvability of Evolutionary Algorithms
进化算法的鲁棒性和可进化性
  • 批准号:
    RGPIN-2016-04699
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Global structure search of two-dimensional materials based on evolutionary algorithms and gaussian process regression
基于进化算法和高斯过程回归的二维材料全局结构搜索
  • 批准号:
    21K03419
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automatic Configuration of Preference-based Evolutionary Multi-objective Optimization Algorithms
基于偏好的进化多目标优化算法的自动配置
  • 批准号:
    21K17824
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient Evolutionary Algorithms for Many-objective Optimization
多目标优化的高效进化算法
  • 批准号:
    RGPIN-2015-03651
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New algorithms and software for analyzing and classifying evolutionary and biomedical data
用于分析和分类进化和生物医学数据的新算法和软件
  • 批准号:
    RGPIN-2016-06557
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Turing AI Fellowship: Rigorous time-complexity analysis of co-evolutionary algorithms
图灵人工智能奖学金:协同进化算法的严格时间复杂度分析
  • 批准号:
    EP/V025562/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了