Alternative algorithms for accelerated symbolic and numeric summation

加速符号和数字求和的替代算法

基本信息

  • 批准号:
    238778-2012
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

In spite of undisputable progress in CPU design some computational tasks in different application domains can still be categorized as heavy-weighted or time-consuming. Any kind of acceleration achieved for such problems is welcomed by the end users. Research proposed here targets long-standing performance related issues in symbolic, symbolic-numeric and numeric summation.
尽管CPU设计取得了无可争议的进步,但不同应用领域的一些计算任务仍然可以归类为重量级任务或耗时任务。任何针对此类问题实现的加速都会受到最终用户的欢迎。这里提出的研究针对符号、符号-数字和数字总和中长期存在的与性能相关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zima, Evgueni其他文献

Zima, Evgueni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zima, Evgueni', 18)}}的其他基金

Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Alternative algorithms for accelerated symbolic and numeric summation
加速符号和数字求和的替代算法
  • 批准号:
    238778-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Alternative algorithms for accelerated symbolic and numeric summation
加速符号和数字求和的替代算法
  • 批准号:
    238778-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Alternative algorithms for accelerated symbolic and numeric summation
加速符号和数字求和的替代算法
  • 批准号:
    238778-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Alternative algorithms for accelerated symbolic and numeric summation
加速符号和数字求和的替代算法
  • 批准号:
    238778-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerated computational schemes for symbolic and numeric algorithms
符号和数值算法的加速计算方案
  • 批准号:
    238778-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerated computational schemes for symbolic and numeric algorithms
符号和数值算法的加速计算方案
  • 批准号:
    238778-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerated computational schemes for symbolic and numeric algorithms
符号和数值算法的加速计算方案
  • 批准号:
    238778-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerated computational schemes for symbolic and numeric algorithms
符号和数值算法的加速计算方案
  • 批准号:
    238778-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Distributed Algorithms for AI Accelerated Materials Discovery
AI 加速材料发现的分布式算法
  • 批准号:
    2906112
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
  • 批准号:
    2340516
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
AI-accelerated optical simulation for fast timing nuclear imaging
用于快速核成像的人工智能加速光学模拟
  • 批准号:
    10744626
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Genomics Accelerated Natural Product Discovery
基因组学加速天然产物发现
  • 批准号:
    10793456
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
Accelerated discovery of synthetic polymers for ribonucleoprotein delivery through the integration of active learning, machine learning, and polymer science
通过整合主动学习、机器学习和聚合物科学,加速发现用于核糖核蛋白递送的合成聚合物
  • 批准号:
    10195432
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
  • 批准号:
    10398798
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
Establish an accelerated design framework for lattice structures employing machine learning algorithms
采用机器学习算法建立晶格结构的加速设计框架
  • 批准号:
    2610103
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Studentship
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现
  • 批准号:
    10613499
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
TOPIC 417: GPU-ACCELERATED 3D MONTE CARLO SPECT RECONSTRUCTION ALGORITHM FOR PERSONALIZED RADIOPHARMACEUTICAL THERAPY
主题 417:用于个性化放射药物治疗的 GPU 加速 3D MONTE CARLO SPECT 重建算法
  • 批准号:
    10496814
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了