Applications of symplectic geometry
辛几何的应用
基本信息
- 批准号:170264-2011
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of my research has concentrated on the moduli space of conjugacy classes of representations of the fundamental group of a 2-manifold.
我的大部分研究都集中在2-流形的基本群的表示的共轭类的模空间上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey, Lisa其他文献
Til Debt Do Us Part: Comparing Gambling Harms Between Gamblers and Their Spouses
- DOI:
10.1007/s10899-019-09826-3 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:2.4
- 作者:
Jeffrey, Lisa;Browne, Matthew;Rockloff, Matthew - 通讯作者:
Rockloff, Matthew
Jeffrey, Lisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey, Lisa', 18)}}的其他基金
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
- 批准号:
170264-2011 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
- 批准号:
170264-2011 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
- 批准号:
170264-2011 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
- 批准号:
170264-2011 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于周期系统的周期离散时间代数Riccati方程及其相关问题的研究
- 批准号:11771159
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
辛几何中的开“格罗莫夫-威腾”不变量
- 批准号:10901084
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
计算电磁学高稳定度辛算法研究
- 批准号:60931002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
相似海外基金
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
- 批准号:
2345030 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
- 批准号:
RGPIN-2018-05771 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
- 批准号:
2204321 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
- 批准号:
2107700 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
- 批准号:
2105578 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
- 批准号:
RGPIN-2018-05771 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
- 批准号:
2107808 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual