Applications of symplectic geometry

辛几何的应用

基本信息

  • 批准号:
    170264-2011
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Much of my research has concentrated on the moduli space of conjugacy classes of representations of the fundamental group of a 2-manifold.
我的大部分研究都集中在2-流形的基本群的表示的共轭类的模空间上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey, Lisa其他文献

Til Debt Do Us Part: Comparing Gambling Harms Between Gamblers and Their Spouses
  • DOI:
    10.1007/s10899-019-09826-3
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jeffrey, Lisa;Browne, Matthew;Rockloff, Matthew
  • 通讯作者:
    Rockloff, Matthew

Jeffrey, Lisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey, Lisa', 18)}}的其他基金

Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2019
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2017
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
  • 批准号:
    RGPIN-2016-05635
  • 财政年份:
    2016
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
  • 批准号:
    170264-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
  • 批准号:
    170264-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
  • 批准号:
    170264-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of symplectic geometry
辛几何的应用
  • 批准号:
    170264-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于周期系统的周期离散时间代数Riccati方程及其相关问题的研究
  • 批准号:
    11771159
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
辛几何中的开“格罗莫夫-威腾”不变量
  • 批准号:
    10901084
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
计算电磁学高稳定度辛算法研究
  • 批准号:
    60931002
  • 批准年份:
    2009
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
  • 批准号:
    2345030
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
  • 批准号:
    RGPIN-2018-05771
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
  • 批准号:
    2204321
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
  • 批准号:
    2107700
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
  • 批准号:
    2105578
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
  • 批准号:
    RGPIN-2018-05771
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
  • 批准号:
    2107808
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了