Classification of Extremal Black Holes
极值黑洞的分类
基本信息
- 批准号:418537-2012
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General relativity (GR) is our theory to study gravitation. It has led to a very accurate model of our Universe at large scales. Its boldest prediction is the existence of black holes, massive objects that form a region of space from which nothing can escape. It is now accepted that black holes really exist in our Universe - a striking example of how abstract theory can have profound physical significance. Despite its successes, GR has resisted attempts to make it consistent with quantum mechanics, which is equally adept at describing the basic constituents of Nature. Such a theory of `quantum gravity' is needed to answer big questions, like how our Universe formed. Luckily, black holes offer a unique laboratory to study this difficult problem - their gravitational fields are so intense that effects from both quantum mechanics and GR come into play. My research focusses on black holes in higher dimensions. We are all familiar with four dimensions - an event has four labels, three for 'where' and one for `when' it occurred. But string theory, a leading candidate for a theory of quantum gravity, requires more than four dimensions. At large scales, it reduces to GR, impelling us to investigate black holes in dimensions greater than four. Much is known about equilibrium black holes in four dimensions. They are shaped like the surface of a ball, and they are uniquely `labelled' by their mass and spin. These remarkable properties no longer hold in higher dimensions. The recent discovery of black rings - donut shaped black holes - proves not only that many shapes are possible, but that uniqueness is lost. The central goals of my work are to classify black holes in higher dimensions, examine the extent of black hole non-uniqueness, and determine how this issue is resolved within quantum gravity. To achieve these challenging objectives, my strategy is to target a special type of black hole which I have shown are simplest to analyse. My research will contribute significantly to a deeper understanding of quantum gravity, and train students with unique quantitative skills valued in other fields. Like most basic research, it is unlikely to immediately benefit society. But it could help us understand Nature at a fundamental level, which I believe is a worthwhile aim.
广义相对论(GR)是我们研究引力的理论。这导致了我们的宇宙在大范围内的非常准确的模型。它最大胆的预测是黑洞的存在,黑洞是形成一个任何东西都无法逃脱的空间区域的大质量物体。现在人们承认,黑洞确实存在于我们的宇宙中--这是抽象理论如何具有深刻物理意义的一个引人注目的例子。尽管取得了成功,但GR一直抵制让它与量子力学保持一致的尝试,量子力学同样擅长描述自然的基本组成部分。这样的“量子引力”理论是回答大问题所必需的,比如我们的宇宙是如何形成的。幸运的是,黑洞提供了一个独特的实验室来研究这个难题--它们的引力场如此之强,以至于量子力学和GR的效应都发挥了作用。我的研究重点是更高维度的黑洞。我们都熟悉四个维度--一个事件有四个标签,三个是“在哪里”,一个是“何时”。但作为量子引力理论的主要候选者,弦理论需要的不止四个维度。在大尺度上,它降低到GR,迫使我们研究维度大于4的黑洞。关于四维平衡黑洞,人们已经知道了很多。它们的形状就像一个球的表面,它们由它们的质量和自转独一无二地“贴上标签”。这些非凡的性质不再适用于更高的维度。最近发现的黑环--甜甜圈形状的黑洞--不仅证明了许多形状是可能的,而且失去了独特性。我工作的中心目标是对更高维度的黑洞进行分类,检查黑洞非唯一性的程度,并确定这个问题是如何在量子引力中解决的。为了实现这些具有挑战性的目标,我的战略是瞄准一种我所展示的最容易分析的特殊类型的黑洞。我的研究将有助于加深对量子引力的理解,并培养具有其他领域有价值的独特量化技能的学生。像大多数基础研究一样,它不太可能立即造福社会。但它可以帮助我们在根本层面上理解自然,我认为这是一个值得追求的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kunduri, Hari其他文献
Cosmic cloaking of rich extra dimensions
丰富的额外维度的宇宙隐身
- DOI:
10.1142/s0218271821420220 - 发表时间:
2021 - 期刊:
- 影响因子:2.2
- 作者:
Alaee, Aghil;Khuri, Marcus;Kunduri, Hari - 通讯作者:
Kunduri, Hari
Existence and uniqueness of stationary solutions in $5$-dimensional minimal supergravity
$5$维最小超重力中平稳解的存在性和唯一性
- DOI:
10.4310/mrl.2022.v29.n5.a1 - 发表时间:
2022 - 期刊:
- 影响因子:1
- 作者:
Alaee, Aghil;Khuri, Marcus;Kunduri, Hari - 通讯作者:
Kunduri, Hari
Kunduri, Hari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kunduri, Hari', 18)}}的其他基金
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
带奇点的extremal度量和toric流形上的extremal度量
- 批准号:10901160
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2401414 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
- 批准号:
2237138 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
- 批准号:
2300347 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
- 批准号:
2243938 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
- 批准号:
2246659 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2246641 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
2246907 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
- 批准号:
2300346 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant