Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
基本信息
- 批准号:RGPIN-2018-04887
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At large scales, the Universe and its constituents, such as planets, stars, and galaxies, are governed by the force of gravity. The framework we use to describe this is general relativity (GR). It is a profound achievement that an abstract theory so accurately describes phenomena that we are only starting to observe today. Indeed, the recent discovery of gravitational waves give us direct evidence of one of GR's boldest predictions - the existence of black holes. These are massive objects concentrated into regions so small that not even light can escape from their pull. The boundary of the region from which one cannot escape is called the event horizon. To describe the extreme gravitational fields produced by black holes, both GR and quantum mechanics (QM) - the theory which successfully describes the Universe at small scales - are needed. Incorporating both GR and QM into a single theory would allow us to answer big questions, such as how the Universe formed and how it will evolve. For this reason, black holes lie at the forefront of developments in theoretical physics. Black holes are very complicated, dynamic objects, but we expect them to eventually settle down to equilibrium. In our familiar four dimensional world (three spatial directions and one time), GR says that such black hole horizons are spherically shaped, like the surface of a ball, and are described by just a few parameters - their mass, spin, and charge. Strikingly, a leading candidate for a theory of quantum gravity, string theory, asserts that in fact there are additional spatial directions. We expect some of these extra dimensions are so small that we cannot see them; but at large scales, the dynamics in the remaining dimensions is governed by GR in dimensions greater than four. A long term goal of my research is achieve an understanding of black holes in this setting - that is, to determine what kinds of horizon shapes are possible and what physical quantities are needed to fully specify them. My recent work has explicitly produced just the second example of a non-spherically-shaped black hole, and it is clear that a greater set of possibilities remains to be discovered. GR in higher dimensions also allows for the existence of `solitons' - these are self-gravitating, horizonless objects with positive mass. There can even be composite states containing both black holes and solitons. My proposal aims to use systematic methods to characterize this rich space of black holes and determine the bounds that constrain their physical parameters. The research should contribute significantly to our understanding of quantum gravity. Students will also receive training in useful quantitative and analytical skills valued in many fields. Even though this work, like most basic research, is unlikely to produce immediate applications, I believe it is worthwhile as it could help us learn about Nature at its most fundamental level.
在大尺度上,宇宙及其组成部分,如行星、恒星和星系,都受到引力的支配。 我们用来描述这一点的框架是广义相对论(GR)。一个抽象的理论如此精确地描述了我们今天才开始观察到的现象,这是一个深刻的成就。 事实上,最近引力波的发现为我们提供了GR最大胆的预测之一-黑洞存在的直接证据。 这些巨大的物体集中在如此小的区域,甚至连光都无法逃脱它们的引力。人们无法逃脱的区域的边界称为事件视界。 为了描述黑洞产生的极端引力场,需要GR和量子力学(QM)-成功描述小尺度宇宙的理论。 将GR和QM合并为一个理论将使我们能够回答一些大问题,比如宇宙是如何形成的,以及它将如何演化。 因此,黑洞处于理论物理学发展的前沿。 黑洞是非常复杂的动态物体,但我们希望它们最终会稳定下来达到平衡。 在我们熟悉的四维世界(三个空间方向和一个时间)中,GR说这样的黑洞视界是球形的,就像球的表面,并且只由几个参数描述-它们的质量,自旋和电荷。 引人注目的是,量子引力理论的主要候选者弦论断言,事实上存在额外的空间方向。 我们预计这些额外维度中的一些是如此之小,以至于我们无法看到它们;但是在大尺度上,其余维度中的动力学在大于4的维度中由GR控制。 我的研究的一个长期目标是在这种情况下实现对黑洞的理解-也就是说,确定什么样的视界形状是可能的,以及需要什么物理量来完全指定它们。 我最近的工作已经明确地产生了第二个非球形黑洞的例子,很明显,还有更多的可能性有待发现。 更高维度的GR也允许“孤子”的存在--这些是具有正质量的自引力、无水平线的物体。 甚至可以有包含黑洞和孤子的复合态。我的建议旨在使用系统的方法来描述这个丰富的黑洞空间,并确定限制其物理参数的边界。 这项研究将对我们理解量子引力做出重大贡献。学生还将接受在许多领域有价值的有用的定量和分析技能的培训。 尽管这项工作,像大多数基础研究一样,不太可能立即产生应用,但我相信它是值得的,因为它可以帮助我们在最基本的层面上了解自然。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kunduri, Hari其他文献
Cosmic cloaking of rich extra dimensions
丰富的额外维度的宇宙隐身
- DOI:
10.1142/s0218271821420220 - 发表时间:
2021 - 期刊:
- 影响因子:2.2
- 作者:
Alaee, Aghil;Khuri, Marcus;Kunduri, Hari - 通讯作者:
Kunduri, Hari
Existence and uniqueness of stationary solutions in $5$-dimensional minimal supergravity
$5$维最小超重力中平稳解的存在性和唯一性
- DOI:
10.4310/mrl.2022.v29.n5.a1 - 发表时间:
2022 - 期刊:
- 影响因子:1
- 作者:
Alaee, Aghil;Khuri, Marcus;Kunduri, Hari - 通讯作者:
Kunduri, Hari
Kunduri, Hari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kunduri, Hari', 18)}}的其他基金
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Classification of Extremal Black Holes
极值黑洞的分类
- 批准号:
418537-2012 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
辛几何中的开“格罗莫夫-威腾”不变量
- 批准号:10901084
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
标准模型精确检验和新物理研究
- 批准号:10747127
- 批准年份:2007
- 资助金额:2.0 万元
- 项目类别:专项基金项目
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
- 批准号:
EP/X002004/1 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Early Career Researcher Award
The Moduli Space of Foliated Surfaces
叶状曲面的模空间
- 批准号:
EP/X020592/1 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
- 批准号:
22K13916 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Complex analytic invariants on the moduli space of Riemann surfaces using super Riemann surfaces
使用超级黎曼曲面的黎曼曲面模空间上的复解析不变量
- 批准号:
21K03239 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
- 批准号:
20H01810 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)