A spectral geometric framework for 3D shape analysis and applications
用于 3D 形状分析和应用的光谱几何框架
基本信息
- 批准号:311656-2013
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In light of the prodigious popularity of 3D gaming and entertainment, vast databases of 3D models are distributed freely or commercially on the Internet. The availability and widespread usage of such repositories, coupled with the need to explore 3D shapes in depth as well as in breadth, has sparked the need to search these vast data collections, retrieve the most relevant selections, and permit them to be effectively reused. This research program seeks to develop a unified theoretical and computational framework for the design of novel invariant shape descriptors to facilitate comparison and differentiation between shapes or parts of a shape. The main idea is that spectral geometry provides relationships between geometric structures of manifolds and spectra of canonically defined differential operators, while Morse theory gives a very direct way of analyzing the topology of a manifold by studying differentiable functions on that manifold. By combining these theories, this project will study how shape processing, signature extraction, and matching algorithms interact to determine overall shape retrieval system performance. Furthermore, to gain greater insight into my own expertise in algorithmic development for 3D shape analysis, I will focus on translating the theoretical results into realistic practical applications. The goal of this project is to investigate the design and analysis of novel shape descriptors, and also to build on some of our existing work along this direction. In particular, we aim to (i) Formalize both the design and analysis of shape signatures by introducing more sound concepts from spectral geometry and Morse theory; (ii) Develop a theoretically rigorous and computationally feasible methodology for 3D object recognition; and (iii) Explore the use of these signatures in other applications, including animation and multimedia security. The shape signatures that will be investigated in this project provide a new way to look at the shape analysis problem by understanding the intrinsic geometry of a 3D shape. The outcome will be important contributions to the state-of-the-art techniques for 3D shape analysis, and will also have a profound impact on a slew of computer vision, graphics, and multimedia applications.
鉴于 3D 游戏和娱乐的极大普及,大量 3D 模型数据库在互联网上免费或商业分发。此类存储库的可用性和广泛使用,再加上深入和广度探索 3D 形状的需要,引发了搜索这些庞大数据集合、检索最相关的选择并允许有效重用它们的需求。该研究项目旨在开发一个统一的理论和计算框架,用于设计新颖的不变形状描述符,以促进形状或形状部分之间的比较和区分。主要思想是谱几何提供了流形的几何结构和规范定义的微分算子的谱之间的关系,而莫尔斯理论通过研究流形上的可微函数,给出了分析流形拓扑的非常直接的方法。通过结合这些理论,该项目将研究形状处理、签名提取和匹配算法如何相互作用以确定形状检索系统的整体性能。此外,为了更深入地了解我自己在 3D 形状分析算法开发方面的专业知识,我将专注于将理论结果转化为现实的实际应用。该项目的目标是研究新型形状描述符的设计和分析,并建立在我们沿着这个方向的一些现有工作的基础上。具体来说,我们的目标是(i)通过引入来自谱几何和莫尔斯理论的更多声音概念来形式化形状特征的设计和分析; (ii) 开发理论上严格且计算上可行的 3D 物体识别方法; (iii) 探索这些签名在其他应用中的使用,包括动画和多媒体安全。本项目将研究的形状特征通过了解 3D 形状的内在几何形状,提供了一种看待形状分析问题的新方法。其成果将为 3D 形状分析的最先进技术做出重要贡献,并且还将对一系列计算机视觉、图形和多媒体应用产生深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BenHamza, Abdessamad其他文献
BenHamza, Abdessamad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BenHamza, Abdessamad', 18)}}的其他基金
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
A spectral geometric framework for 3D shape analysis and applications
用于 3D 形状分析和应用的光谱几何框架
- 批准号:
311656-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
A spectral geometric framework for 3D shape analysis and applications
用于 3D 形状分析和应用的光谱几何框架
- 批准号:
311656-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
A spectral geometric framework for 3D shape analysis and applications
用于 3D 形状分析和应用的光谱几何框架
- 批准号:
311656-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Morse-theoretic topological modeling of 3D objects and applications
3D 对象的莫尔斯理论拓扑建模和应用
- 批准号:
311656-2008 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Morse-theoretic topological modeling of 3D objects and applications
3D 对象的莫尔斯理论拓扑建模和应用
- 批准号:
311656-2008 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
- 批准号:
10637960 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
A Universal Framework for Geometric Information in Product Development
产品开发中几何信息的通用框架
- 批准号:
2312175 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
A geometric framework approach to understand multi-metal toxicity on individual organisms to evaluate relative risks and benefits of pollution and mit
一种几何框架方法,用于了解多金属对个体生物体的毒性,以评估污染和减排的相对风险和效益
- 批准号:
2881375 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10579939 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2106672 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10400100 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2106578 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2107434 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Neurocomputational mechanisms of proactive social behavior deficits in autism spectrum disorder
自闭症谱系障碍主动社会行为缺陷的神经计算机制
- 批准号:
10656345 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Neurocomputational mechanisms of proactive social behavior deficits in autism spectrum disorder
自闭症谱系障碍主动社会行为缺陷的神经计算机制
- 批准号:
10882085 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别: