Normal forms and bifurcations of vector fields
矢量场的范式和分岔
基本信息
- 批准号:9420-2010
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The whole project is centered on fundamental problems in analytic dynamics, especially low dimensional dynamical systems depending on parameters: 1-dimensional diffeomorphisms, planar vector fields, either real vector fields or complex foliations, and linear differential systems. Dynamical systems are systems which depend on the time. It is very difficult to find explicit solutions of a given system. Poincaré was the founder of geometric methods to study and understand the solutions of dynamical systems. These methods allow drawing qualitative conclusions, even without having explicit formulas for the solutions. In order to better understand dynamical systems, it is important to attack them at their weak points: the singularities in phase space and the bifurcation values in parameter space. The research project is centered precisely on these matters:
- a better understanding of the singularities of dynamical systems depending on parameters,
- a study of the bifurcations corresponding to changes of qualitative behaviour.
The study of singularities is done through normal forms, which represent models for equivalence classes of singularities. But the changes of coordinates to normal forms diverge generically and one purpose of the project is to understand why.
As for the bifurcations, the project is centered on bifurcations in 2-dimensional vector fields and bifurcations creating limit cycles. The project both considers applications in pure mathematics, in link with Hilbert's 16th problem on the maximum number of limit cycles of a polynomial vector field as a function of the degree, and in applied mathematics, with the study of some sophisticated predator-prey models.
整个项目集中在分析动力学的基本问题,特别是低维动力系统取决于参数:1维同构,平面向量场,无论是真实的向量场或复杂的叶理,和线性微分系统。动力系统是依赖于时间的系统。很难找到一个给定系统的显式解。庞加莱是创始人的几何方法来研究和理解的解决方案的动力系统。这些方法允许得出定性的结论,即使没有明确的公式的解决方案。为了更好地理解动力系统,重要的是攻击它们的弱点:相空间中的奇点和参数空间中的分叉值。该研究项目正是集中在这些问题:
- 更好地理解依赖于参数的动力系统的奇异性,
- 研究与定性行为变化相对应的分叉。
奇点的研究是通过规范形式完成的,规范形式代表奇点的等价类的模型。但是,坐标到范式的变化通常是不同的,该项目的一个目的是了解为什么。
至于分叉,该项目集中在二维向量场的分叉和产生极限环的分叉。该项目既考虑在纯数学中的应用,与希尔伯特关于多项式向量场的极限环的最大数量作为度的函数的第16个问题有关,也考虑在应用数学中的应用,研究一些复杂的捕食者-猎物模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rousseau, Christiane其他文献
Bifurcation analysis of a predator-prey system with generalised Holling type III functional response
- DOI:
10.1007/s10884-008-9102-9 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:1.3
- 作者:
Lamontagne, Yann;Coutu, Caroline;Rousseau, Christiane - 通讯作者:
Rousseau, Christiane
Rousseau, Christiane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rousseau, Christiane', 18)}}的其他基金
Singularities of dynamical systems and their unfoldings
动力系统的奇点及其展开
- 批准号:
RGPIN-2016-03862 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Singularities of dynamical systems and their unfoldings
动力系统的奇点及其展开
- 批准号:
RGPIN-2016-03862 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Singularities of dynamical systems and their unfoldings
动力系统的奇点及其展开
- 批准号:
RGPIN-2016-03862 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Singularities of dynamical systems and their unfoldings
动力系统的奇点及其展开
- 批准号:
RGPIN-2016-03862 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Singularities of dynamical systems and their unfoldings
动力系统的奇点及其展开
- 批准号:
RGPIN-2016-03862 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Normal forms and bifurcations of vector fields
矢量场的范式和分岔
- 批准号:
9420-2010 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Normal forms and bifurcations of vector fields
矢量场的范式和分岔
- 批准号:
9420-2010 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Normal forms and bifurcations of vector fields
矢量场的范式和分岔
- 批准号:
9420-2010 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Normal forms and bifurcations of vector fields
矢量场的范式和分岔
- 批准号:
9420-2010 - 财政年份:2010
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Normal forms and bifurcations of vector fields
矢量场的范式和分岔
- 批准号:
9420-2005 - 财政年份:2009
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
- 批准号:
2401353 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant