Corona algebras, and quantum groups
Corona 代数和量子群
基本信息
- 批准号:228065-2010
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A C*-algebra is a noncommutative generalization of a function algebra over a topological space, thus is sometimes called a noncommutative topological space. The methods used for studying the topology of C*-algebras, also known as geometric functional analysis, are very different from those of classical topology, but the rather ambitious program of classifying all C*-algebras is like the classical program of classifying topological spaces by means of their topological invariants. The recent plethoria of counterexamples indicate that new approaches may be needed. However, one of the high points of the existing theory is Kirchberg's classification of purely infinite simple C*-algebras, and by generalizing one of Kirchberg's key theorems, we obtain the corona factorization property, which characterizes a noncommutative topology property in analytic terms and has deep consequences for the behaviour of a C*-algebra.
Groups are mathematical objects that encode symmetry properties of a structure, and can be used to construct group algebras. Quantum groups are thought of as generalizations of groups, much in the same sense as C*-algebras are thought of as noncommutative topological spaces. It is possible for a C*-algebra to also be a quantum group. We apply the powerful machinery of the C*-algebraic classification program to a certain class of quantum group, obtaining interesting results, possibly eventually leading us to new examples of quantum groups. This is a highly novel approach to the challenging problem of classification of quantum groups.
C*-代数是拓扑空间上函数代数的非交换推广,因此有时被称为非交换拓扑空间。用于研究C*-代数的拓扑的方法,也称为几何泛函分析,与经典拓扑学的方法有很大的不同,但对所有C*-代数进行分类的雄心勃勃的程序类似于利用其拓扑不变量来对拓扑空间进行分类的经典程序。最近过多的反例表明,可能需要新的方法。然而,现有理论的一个亮点是Kirchberg对纯无限单C~*-代数的分类,通过推广Kirchberg的一个关键定理,我们得到了冠因式分解性质,它在解析意义下刻画了非对易拓扑性,并对C~*-代数的行为有深刻的影响。
群是对结构的对称性进行编码的数学对象,可用于构造群代数。量子群被认为是群的推广,就像C*-代数被认为是非交换拓扑空间一样。C*-代数也可能是量子群。我们将C*-代数分类程序的强大机制应用于一类量子群,得到了有趣的结果,最终可能会引导我们找到量子群的新例子。对于量子群分类这一具有挑战性的问题,这是一种非常新颖的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kucerovsky, Daniel其他文献
Kucerovsky, Daniel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kucerovsky, Daniel', 18)}}的其他基金
Corona algebras, and quantum groups
Corona 代数和量子群
- 批准号:
228065-2010 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Corona algebras, and quantum groups
Corona 代数和量子群
- 批准号:
228065-2010 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Corona algebras, and quantum groups
Corona 代数和量子群
- 批准号:
228065-2010 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Corona algebras, and quantum groups
Corona 代数和量子群
- 批准号:
228065-2010 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
- 批准号:
228065-2005 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
- 批准号:
228065-2005 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
- 批准号:
228065-2005 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
- 批准号:
228065-2005 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
- 批准号:
228065-2005 - 财政年份:2005
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Classification of inductive limits of bundles of absorbing algebras
吸收代数束的归纳极限的分类
- 批准号:
228065-2000 - 财政年份:2004
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Quantum algebras with supersymmetries
具有超对称性的量子代数
- 批准号:
DP240101572 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Projects
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Higher skein algebras and quantum cluster algebras of surfaces
表面的高等绞纱代数和量子簇代数
- 批准号:
23K12972 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
KMS States of Quantum Cuntz-Krieger Algebras
量子 Cuntz-Krieger 代数的 KMS 态
- 批准号:
2247587 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
- 批准号:
2303334 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant














{{item.name}}会员




