Autonomous Estimation and Control for Stochastic Nonlinear Chemical and Biological Processes

随机非线性化学和生物过程的自主估计和控制

基本信息

  • 批准号:
    341778-2012
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The ever increasing energy, environment and quality demands on Canadian chemical and biological industries are subjecting them to a high level of economic pressure. Hence, increasing the all-round efficiency of these industries is vital for their economic well-being. While a variety of factors determine their efficiency, in this project we will focus on development of novel methods to improve efficiency through a mechanism of adaptive information processing. In particular, the objectives of this project are (1) to develop a mechanism for online adaptive modeling of nonlinear processes, (2) to develop a strategy for adaptive experiment design and (3) to use the adaptive modeling mechanism for generating actionable information. A lot of information, in the form of data and a priori knowledge, is available from chemical and biological processes. This data are often generated through batch experiments and processed in a batch fashion to capture them in the form of models. The data are also used to identify discrepancies between the model and the measurements. However, industrial processes are often changing and batch processing of data is suboptimal. In this project, we will develop adaptive data processing techniques. In particular, nonlinear, noisy, and time varying nature of real processes will be accounted for in the mechanisms developed. The developed methods will enable Canadian economic drivers such as oil & gas, pulp & paper, and biotech industries to operate their processes at optimal level. The project will also help us train highly qualified personnel in an important field of engineering.
加拿大化工和生物工业对能源、环境和质量的要求不断提高,使它们面临着很大的经济压力。因此,提高这些行业的综合效率对它们的经济健康至关重要。虽然多种因素决定了它们的效率,但在这个项目中,我们将专注于开发新的方法,通过自适应信息处理机制来提高效率。具体地说,该项目的目标是(1)开发一种对非线性过程进行在线自适应建模的机制,(2)开发一种自适应实验设计策略,以及(3)使用自适应建模机制来生成可操作的信息。 许多信息,以数据和先验知识的形式,可以从化学和生物过程中获得。这些数据通常是通过批量实验生成的,并以批量方式进行处理,以模型的形式捕获它们。这些数据也被用来确定模型和测量之间的差异。然而,工业过程经常在变化,数据的批处理不是最优的。在这个项目中,我们将开发自适应数据处理技术。特别是,实际过程的非线性、噪声和时变特性将在所开发的机制中考虑在内。 开发的方法将使加拿大的经济驱动力,如石油和天然气、纸浆和造纸以及生物技术行业,能够以最佳水平运行其流程。该项目还将帮助我们在一个重要的工程领域培养高素质的人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gopaluni, Bhushan其他文献

A Novel Approach to Alarm Causality Analysis Using Active Dynamic Transfer Entropy
Targeted deep learning classification and feature extraction for clinical diagnosis.
  • DOI:
    10.1016/j.isci.2023.108006
  • 发表时间:
    2023-11-17
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Tsai, Yiting;Nanthakumar, Vikash;Mohammadi, Saeed;Baldwin, Susan A.;Gopaluni, Bhushan;Geng, Fei
  • 通讯作者:
    Geng, Fei

Gopaluni, Bhushan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gopaluni, Bhushan', 18)}}的其他基金

Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
  • 批准号:
    531114-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
  • 批准号:
    RGPIN-2017-05794
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
  • 批准号:
    RGPIN-2017-05794
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
  • 批准号:
    531114-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning Enabled Maintenance Free Control
深度学习支持免维护控制
  • 批准号:
    536418-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
  • 批准号:
    531114-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning Enabled Maintenance Free Control
深度学习支持免维护控制
  • 批准号:
    536418-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
  • 批准号:
    RGPIN-2017-05794
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Process analytics to predict arc loss in an electric arc furnace**
预测电弧炉电弧损耗的过程分析**
  • 批准号:
    536692-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
  • 批准号:
    RGPIN-2017-05794
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
CAREER: Robust Data Based Control and Estimation for Resilient DC Microgrids
职业:基于稳健数据的弹性直流微电网控制和估计
  • 批准号:
    2339434
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
CAREER: Learning, Estimation, and Control of Networked Epidemic Processes
职业:网络化流行病过程的学习、估计和控制
  • 批准号:
    2238388
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Flow sensing, estimation and control in turbulent flows
湍流中的流量传感、估计和控制
  • 批准号:
    RGPIN-2018-04147
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
  • 批准号:
    RGPIN-2020-05097
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Estimation of Human Locomotion Using Artificial Intelligence and Application to Control of Biped Robot
利用人工智能估计人体运动及其在双足机器人控制中的应用
  • 批准号:
    22K04012
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intelligent Multi-Agent Systems: Cooperative Control, Estimation and Optimization
智能多智能体系统:协作控制、估计和优化
  • 批准号:
    568048-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Postdoctoral Fellowships
Distributed Control and Estimation of Sustainable Chemical Process Systems
可持续化学过程系统的分布式控制和估计
  • 批准号:
    RGPIN-2017-04198
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Vision-Based Motion Estimation and Control for Multiple and Complex Robots
多个复杂机器人的基于视觉的统一运动估计和控制
  • 批准号:
    2212051
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了