A learning-by-reading framework for ontology learning
本体学习的边读边学框架
基本信息
- 批准号:402263-2011
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The learning-by-reading challenge refers to a number of natural language understanding tasks dedicated to the extraction of a formal conceptual model from free texts and to the filtering and integration of this knowledge. In the context of the Semantic Web, this challenge often refers to the ability of learning a domain ontology from free text. This task is particularly challenging when the adopted approach is an open (domain independent) and unsupervised (without any guidance) knowledge extraction. Such a domain independent approach is crucial to the interoperability and reuse of ontology learning methodologies across various applications and domains. This research aims at developing a domain independent methodology and a set of tools for learning the ontology layers (terms, taxonomy, conceptual relations, relation hierarchies, axioms and axiom schemata) from unstructured knowledge sources. In particular, we aim at automatically learning the three last layers, which has been done very rarely in the state of the art.The research will also explore filtering techniques that identify important information and integration techniques that adequately combine knowledge coming from various sources. The interest of the availability of a complete ontology (with all its layers) is that it is essential for agents to reason over semantic data and this will provide effective knowledge retrieval capabilities.
The long-term objective of this research is to build learning-by-reading systems by exploring the integration of deep semantic analysis, filtering and knowledge integration techniques. The short-term objective is to build a proof of concept by extracting a domain ontology using a combination of some of these techniques and by focusing on layers that require deep semantic analysis. The major contribution of our proposal is the extraction of domain conceptual models from unstructured sources enabling the indexing of texts and reasoning as well as the exploitation of such conceptual models in various areas such as the Semantic Web and the corporate world.
阅读学习挑战指的是一些自然语言理解任务,致力于从自由文本中提取正式的概念模型,并过滤和整合这一知识。在语义网的背景下,这一挑战通常指的是从自由文本学习领域本体的能力。当采用的方法是开放(独立于领域)和无监督(没有任何指导)的知识提取时,这项任务尤其具有挑战性。这种与领域无关的方法对于跨各种应用和领域的本体学习方法的互操作性和重用性至关重要。该研究旨在开发一种独立于领域的方法和一套工具,用于从非结构化知识源中学习本体层(术语、分类、概念关系、关系层次、公理和公理模式)。特别是,我们的目标是自动学习最后三层,这在现有技术的状态下很少完成。研究还将探索识别重要信息的过滤技术和充分结合来自各种来源的知识的集成技术。一个完整的本体(包括它的所有层)的可用性的好处是,对代理来说,它是对语义数据进行推理的关键,这将提供有效的知识检索能力。
本研究的长期目标是通过探索深度语义分析、过滤和知识整合技术的整合来构建阅读学习系统。短期目标是通过使用其中一些技术的组合提取领域本体并关注需要深入语义分析的层来构建概念证明。我们的建议的主要贡献是从非结构化来源提取领域概念模型,使得能够对文本和推理进行索引,以及在诸如语义网和企业世界等不同领域中利用这些概念模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zouaq, Amal其他文献
"Choose Your Classmates, Your GPA Is at Stake!": The Association of Cross-Class Social Ties and Academic Performance
- DOI:
10.1177/0002764213479362 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:3.2
- 作者:
Gasevic, Dragan;Zouaq, Amal;Janzen, Robert - 通讯作者:
Janzen, Robert
Building Domain Ontologies from Text for Educational Purposes
- DOI:
10.1109/tlt.2008.12 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Zouaq, Amal;Nkambou, Roger - 通讯作者:
Nkambou, Roger
Zouaq, Amal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zouaq, Amal', 18)}}的其他基金
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Investigating Medical Scenario Mining for the improvement of Clinical Training******
研究医学场景挖掘以改善临床培训******
- 批准号:
533823-2018 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Engage Grants Program
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Vers des résumés par abstraction basés sur les données ouvertes du LOD
LOD 的抽象基础的简历
- 批准号:
470382-2014 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Engage Grants Program
A learning-by-reading framework for ontology learning
本体学习的边读边学框架
- 批准号:
402263-2011 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
A learning-by-reading framework for ontology learning
本体学习的边读边学框架
- 批准号:
402263-2011 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Constructing a large-scale biomedical knowledge graph using all PubMed abstracts and PMC full-text articles and its applications
利用所有PubMed摘要和PMC全文文章构建大规模生物医学知识图谱及其应用
- 批准号:
10648553 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Mitigating sexual stigma within healthcare interactions to improve engagement of MSM in HIV prevention
减轻医疗保健互动中的性耻辱,以提高 MSM 在艾滋病毒预防中的参与度
- 批准号:
10160243 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Non-target analysis of maternal and cord blood samples: Advancing computational tools and discovering novel chemicals
母体和脐带血样本的非目标分析:改进计算工具并发现新型化学物质
- 批准号:
10191991 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Non-target analysis of maternal and cord blood samples: Advancing computational tools and discovering novel chemicals
母体和脐带血样本的非目标分析:改进计算工具并发现新型化学物质
- 批准号:
10766529 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10687146 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Mitigating sexual stigma within healthcare interactions to improve engagement of MSM in HIV prevention
减轻医疗保健互动中的性耻辱,以提高 MSM 在艾滋病毒预防中的参与度
- 批准号:
10319488 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Non-target analysis of maternal and cord blood samples: Advancing computational tools and discovering novel chemicals
母体和脐带血样本的非目标分析:改进计算工具并发现新型化学物质
- 批准号:
10394398 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10047734 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10490241 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:














{{item.name}}会员




