Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
基本信息
- 批准号:RGPIN-2017-04031
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of structured data on the Web, through the linked data paradigm (aka the Web of data), has received considerable attention during the last few years, especially with the adoption of knowledge graphs by companies such as Google and Microsoft to enhance their search engines. The Linked Open Data Cloud (LOD), a set of interconnected data sets across domains, represents the latest developments of the Web of data. We have witnessed a huge development in the number of published RDF datasets. One of the main interests of the LOD is its potential to offer semantic search capabilities such as query answering with direct answers instead of sets of documents, and the ability to a) find answers from various knowledge sources and b) infer answers through reasoning mechanisms. ******However, the quantity of published datasets poses new challenges as there aren't any established mechanisms to ensure their quality. In particular, the deluge of RDF data without proper schemas and ontological models is of little interest for efficient query answering. Another challenge is the representation and coverage of current Web content, especially for domain knowledge. Despite the growth of the Web of data, the majority of Web content is still represented in unstructured formats and texts. Thus there is a necessity to expand the current LOD with data and schemas of good quality; to develop methods and tools that learn ontological schemas and knowledge bases from unstructured Web content; to measure and evaluate LOD quality and design correction and completion strategies for current Web structured data; and to develop use cases that concretely show the interest of the Web of data for query answering.******In this discovery grant, we will focus on one particular resource on the Web which is the cross-domain encyclopedia Wikipedia. In the context of the Web of data, Wikipedia is linked to one of the main resources on the LOD, DBpedia, which is the RDF representation of Wikipedia based on Wikipedia infoboxes and categories. Being a hub on the LOD, DBpedia has become a central resource for several semantic analysis tasks. In particular, DBpedia is the backbone of several new industrial and academic semantic annotation services (e.g. IBM's Alchemy, DBpedia Spotlight) which are used to tag Web content and recognize entities and concepts in text. However, DBpedia suffers from the same quality problems previously described in terms of coverage of Wikipedia content, lack of proper ontological schema, and factual errors. The objective of this program is to develop tools and methods to correct, axiomatize and expand the DBpedia knowledge base. We will also demonstrate the interest of the learned knowledge base for better semantic annotation and query answering in the context of the Semantic Web.
在过去几年中,通过链接数据范式(又名数据网络)开发网络上的结构化数据受到了相当大的关注,特别是随着谷歌和微软等公司采用知识图谱来增强其搜索引擎。链接开放数据云(LOD)是一组跨域互连的数据集,代表了数据网络的最新发展。我们见证了已发布的RDF数据集数量的巨大发展。LOD的主要兴趣之一是其提供语义搜索能力的潜力,例如用直接答案而不是文档集来回答查询,以及a)从各种知识源找到答案和B)通过推理机制推断答案的能力。****** 然而,发布的数据集数量带来了新的挑战,因为没有任何既定的机制来确保其质量。特别是,没有适当的模式和本体模型的RDF数据的洪水是没有什么兴趣的高效查询回答。另一个挑战是当前Web内容的表示和覆盖,特别是领域知识。尽管Web数据不断增长,但大多数Web内容仍然以非结构化格式和文本表示。因此,有必要用高质量的数据和模式来扩展当前的LOD;开发从非结构化Web内容中学习本体模式和知识库的方法和工具;测量和评估LOD质量,并为当前的Web结构化数据设计校正和完成策略;并开发具体显示Web数据对查询应答的兴趣的用例。在这个发现奖助金中,我们将专注于Web上的一个特定资源,即跨域百科全书Wikipedia。在数据网络的背景下,维基百科链接到LOD上的主要资源之一DBpedia,DBpedia是基于维基百科信息框和类别的维基百科的RDF表示。作为LOD的中心,DBpedia已经成为多个语义分析任务的中心资源。特别是,DBpedia是几个新的工业和学术语义注释服务(例如IBM的Alchemy,DBpedia Spotlight)的支柱,用于标记Web内容并识别文本中的实体和概念。然而,DBpedia也存在之前描述的质量问题,包括维基百科内容的覆盖范围,缺乏适当的本体架构和事实错误。该计划的目标是开发工具和方法来纠正,公理化和扩展DBpedia知识库。我们还将展示更好的语义注释和查询回答的语义Web的上下文中的学习知识库的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zouaq, Amal其他文献
"Choose Your Classmates, Your GPA Is at Stake!": The Association of Cross-Class Social Ties and Academic Performance
- DOI:
10.1177/0002764213479362 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:3.2
- 作者:
Gasevic, Dragan;Zouaq, Amal;Janzen, Robert - 通讯作者:
Janzen, Robert
Building Domain Ontologies from Text for Educational Purposes
- DOI:
10.1109/tlt.2008.12 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Zouaq, Amal;Nkambou, Roger - 通讯作者:
Nkambou, Roger
Zouaq, Amal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zouaq, Amal', 18)}}的其他基金
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Investigating Medical Scenario Mining for the improvement of Clinical Training******
研究医学场景挖掘以改善临床培训******
- 批准号:
533823-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
A learning-by-reading framework for ontology learning
本体学习的边读边学框架
- 批准号:
402263-2011 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Vers des résumés par abstraction basés sur les données ouvertes du LOD
LOD 的抽象基础的简历
- 批准号:
470382-2014 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
A learning-by-reading framework for ontology learning
本体学习的边读边学框架
- 批准号:
402263-2011 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
A learning-by-reading framework for ontology learning
本体学习的边读边学框架
- 批准号:
402263-2011 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10457684 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Knowledge Graph Mining for Recommendation and Engagement
用于推荐和参与的知识图挖掘
- 批准号:
576524-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
- 批准号:
10809950 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10661550 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
- 批准号:
10809931 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Graph Mining for the Linked Open Data Cloud
链接开放数据云的知识图挖掘
- 批准号:
RGPIN-2017-04031 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
III: EAGER: Knowledge Graph Mining for Financial Risk Analytics
III:EAGER:金融风险分析的知识图挖掘
- 批准号:
1738895 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant