Development of a microfluidic 3D vascularized tissue model with integrated electric cell-layer impendance sensing
开发具有集成电细胞层阻抗传感功能的微流体 3D 血管化组织模型
基本信息
- 批准号:478874-2015
- 负责人:
- 金额:$ 9.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Idea to Innovation
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poor efficacy and unpredictable effects are the leading causes of drug removal from the market, costing pharmaceutical companies billions of wasted dollars and putting patients at risk. Poor drug performance in humans is largely because drugs are tested in labs that either grow cells on two dimensional (2D) plastic dishes or use animal models, which poorly mimic human drug responses. Therefore, there is a need for improved cell-based models that could identify and eliminate ineffective and dangerous drugs early in the drug discovery process could have enormous health and economic benefits.
To meet this need, we have developed a system capable of recapitulating the complex, three-dimensional structure and function of vascularized tissues, like the brain, liver, and heart. By combining arrays of microfludic channels (to mimic blood vessels) with 3D cell culture (organ tissue) on a single device we are able to recreate artificial human microtissues for quick and low cost early stage drug screening. Potential end-users of this technology, including Pfizer and 3D-Biotek, are interested in using it to model the blood-brain barrier, but require methods to validate that the tissues cultured within our device are physiological. To that end, we plan to implement electrical cell-layer impedance sensing into the existing platform to assess the quality of the artificial blood vessels created within our system. The end result will be a system that is expected to identify ineffective drugs much earlier in the discovery process, thereby saving time and money.
Unlike the majority of commercially available microfludic platforms, our invention is unique in its compatibility with standard laboratory equipment and medium- to high-throughput workflow, ensuring ease of implementation into the drug discovery pipeline. The ease of adoption will allow us to directly reach our target end-users (pharmaceutical, biotechnology, and life science companies and research labs) shortly after completion of this project. To meet the significant demand from potential customers, we will form a start-up company to sell the microfludic platform directly to the customers.
疗效差和不可预测的效果是药物从市场上撤下的主要原因,制药公司浪费了数十亿美元,并将患者置于危险之中。药物在人体中的表现不佳,主要是因为药物是在实验室中进行测试的,这些实验室要么在二维(2D)塑料培养皿上培养细胞,要么使用动物模型,这些模型很难模拟人类药物反应。因此,需要改进的基于细胞的模型,其可以在药物发现过程的早期识别和消除无效和危险的药物,这可能具有巨大的健康和经济效益。
为了满足这一需求,我们开发了一种系统,能够重现复杂的三维结构和血管化组织的功能,如大脑,肝脏和心脏。通过将微流体通道阵列(模拟血管)与3D细胞培养(器官组织)结合在一个设备上,我们能够重建人工人类微组织,用于快速和低成本的早期药物筛选。该技术的潜在最终用户,包括辉瑞公司和3D-Biotek,有兴趣使用它来模拟血脑屏障,但需要方法来验证在我们的设备内培养的组织是生理性的。为此,我们计划在现有平台中实现细胞层电阻抗传感,以评估我们系统中创建的人工血管的质量。最终的结果将是一个系统,预计将在发现过程中更早地识别无效药物,从而节省时间和金钱。
与大多数市售的微流体平台不同,我们的发明在与标准实验室设备和中高通量工作流程的兼容性方面是独特的,从而确保易于实施到药物发现管道中。易于采用将使我们能够在项目完成后不久直接接触到目标最终用户(制药、生物技术和生命科学公司和研究实验室)。为了满足潜在客户的巨大需求,我们将成立一家初创公司,直接向客户销售微流控平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simmons, Craig其他文献
Simmons, Craig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simmons, Craig', 18)}}的其他基金
Integrated biosensors for organ-on-a-chip and physiological monitoring platforms
用于芯片器官和生理监测平台的集成生物传感器
- 批准号:
RGPIN-2022-04375 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
Melt electrowrite system for biofabrication of complex engineered tissues
用于复杂工程组织生物制造的熔体电写系统
- 批准号:
RTI-2023-00475 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Research Tools and Instruments
Biosensing for organ-on-a-chip platforms
器官芯片平台的生物传感
- 批准号:
RGPIN-2016-06026 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
Biosensing for organ-on-a-chip platforms
器官芯片平台的生物传感
- 批准号:
RGPIN-2016-06026 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
A microfluidic blood-brain barrier model with on-chip cell barrier biosensing
具有片上细胞屏障生物传感的微流体血脑屏障模型
- 批准号:
531083-2018 - 财政年份:2019
- 资助金额:
$ 9.11万 - 项目类别:
Collaborative Research and Development Grants
Biosensing for organ-on-a-chip platforms
器官芯片平台的生物传感
- 批准号:
RGPIN-2016-06026 - 财政年份:2019
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
Development of a physiological cardiac microtissue platform for drug development
开发用于药物开发的生理心脏微组织平台
- 批准号:
508366-2017 - 财政年份:2018
- 资助金额:
$ 9.11万 - 项目类别:
Collaborative Health Research Projects
Engineering Pulmonary Valve Tissue for Pediatric Patients with Tetralogy of Fallot
法洛四联症儿科患者的肺瓣组织工程
- 批准号:
508364-2017 - 财政年份:2018
- 资助金额:
$ 9.11万 - 项目类别:
Collaborative Health Research Projects
A microfluidic blood-brain barrier model with on-chip cell barrier biosensing**
具有片上细胞屏障生物传感的微流体血脑屏障模型**
- 批准号:
531083-2018 - 财政年份:2018
- 资助金额:
$ 9.11万 - 项目类别:
Collaborative Research and Development Grants
Biosensing for organ-on-a-chip platforms
器官芯片平台的生物传感
- 批准号:
RGPIN-2016-06026 - 财政年份:2018
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于压力敏感肾单位微流控芯片的肾上皮细胞CAT1-mTOR通路在梗阻性肾损伤中的作用机制研究
- 批准号:82370678
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于RPA-microfluidic chip技术高效诊断侵袭性真菌病的研究
- 批准号:2020A151501763
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
利用Microfluidic系统研究血流速度对巨核细胞生成血小板的信号调控机制
- 批准号:81770131
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Developing 3D brain circuits on-a-chip for in vitro study of human cortico-striatal circuitry development and connectivity
开发片上 3D 大脑回路,用于人类皮质纹状体回路发育和连接的体外研究
- 批准号:
10741965 - 财政年份:2023
- 资助金额:
$ 9.11万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 9.11万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 9.11万 - 项目类别:
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10340194 - 财政年份:2022
- 资助金额:
$ 9.11万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10301622 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10468156 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Modeling of human HSV infection: development of immune-competent 3D skin-on-chip with vascular perfusion
人类 HSV 感染建模:开发具有血管灌注功能的免疫活性 3D 皮肤芯片
- 批准号:
10328978 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Modeling of human HSV infection: development of immune-competent 3D skin-on-chip with vascular perfusion
人类 HSV 感染建模:开发具有血管灌注功能的免疫活性 3D 皮肤芯片
- 批准号:
10555337 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Development of an acoustofluidic device for high-throughput 3D imaging and sorting of C. elegans
开发用于线虫高通量 3D 成像和分选的声流控装置
- 批准号:
10383627 - 财政年份:2018
- 资助金额:
$ 9.11万 - 项目类别:
3D Bioprinter for the Development of Tissue Constructs and Microfluidic Devices
用于开发组织结构和微流体设备的 3D 生物打印机
- 批准号:
RTI-2018-00961 - 财政年份:2017
- 资助金额:
$ 9.11万 - 项目类别:
Research Tools and Instruments