Content-aware processing of vector images

矢量图像的内容感知处理

基本信息

  • 批准号:
    RGPIN-2014-06547
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

In computer graphics, two-dimensional images are typically represented in one of two ways. Raster images are grids of colour samples; they are the kind that everyday computer users are most familiar with, because digital photographs are represented in this way. In the world of professional graphic design and illustration, however, vector images are also ubiquitous and important. A vector image is more like a drawing: it is made up of a sequence of shapes that are filled in and outlined in solid or gradually changing colours. Because they represent objects in an image as precise geometry, vector images have the advantage that they can be scaled arbitrarily without any loss in quality. Vector images are common on computer desktops and the screens of mobile devices (where they are first "rasterized", so that they can be displayed as pixels), in print advertising and signage, and on clothing. They are also used to represent characters and backgrounds in many video games. Today there are sophisticated algorithms that can perform intelligent analysis and transformations of digital photographs. Your camera can detect when your subject is smiling, and compose complex photographs in various ways from multiple independent exposures. Desktop image editing software like Adobe Photoshop can dynamically reshape digital images by making imperceptible changes to background objects, seamlessly alter the contents of photographs, and even alter colours or materials of individual objects in photographs. In comparison, tools for editing vector images still operate at a fairly low level of abstraction. These tools are more literal: they are simply not as able to make sense of the structure and content of the image being edited. This is unfortunate, especially given that a vector image contains a significant amount of geometric information that is not being exploited, such as the sizes and shapes of objects and the relationships between them. This research investigates ways of representing and manipulating vector images that exploit their inherent structure, giving graphic designers some of the power over vector images that photographers now enjoy with raster images. I will explore the analysis of vector line art in order to support more intelligent colouring operations, which could be used in comic creation. I will look at representations of shapes and textures that permit large, non-repeating blocks of texture to be created automatically from small examples. And I will develop techniques for dynamically reshaping a vector image's canvas without distorting the shapes of the objects in that image. This work promises to revitalize contemporary research into the capabilities of vector graphics, and empower expert designers and illustrators with new tools that make them more effective, more expressive, and more creative.
在计算机图形学中,二维图像通常以两种方式之一表示。光栅图像是彩色样本的网格;它们是日常计算机用户最熟悉的那种,因为数码照片就是以这种方式表示的。然而,在专业平面设计和插图的世界里,矢量图像也无处不在,也很重要。矢量图像更像是一幅画:它是由一系列的形状组成的,这些形状是用固体或逐渐变化的颜色填充和勾勒出来的。因为它们将图像中的对象表示为精确的几何形状,所以矢量图像的优点是可以任意缩放而不会损失任何质量。矢量图像在电脑桌面和移动设备的屏幕上(它们首先被“栅格化”,这样它们就可以作为像素显示)、印刷广告和标牌以及服装上都很常见。它们也被用来代表许多电子游戏中的角色和背景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaplan, Craig其他文献

Evolutionary conservation of the fidelity of transcription.
  • DOI:
    10.1038/s41467-023-36525-w
  • 发表时间:
    2023-03-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Chung, Claire;Verheijen, Bert M.;Navapanich, Zoe;McGann, Eric G.;Shemtov, Sarah;Lai, Guan-Ju;Arora, Payal;Towheed, Atif;Haroon, Suraiya;Holczbauer, Agnes;Chang, Sharon;Manojlovic, Zarko;Simpson, Stephen;Thomas, Kelley W.;Kaplan, Craig;van Hasselt, Peter;Timmers, Marc;Erie, Dorothy;Chen, Lin;Gout, Jean-Francois;Vermulst, Marc
  • 通讯作者:
    Vermulst, Marc

Kaplan, Craig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaplan, Craig', 18)}}的其他基金

Geometry-guided synthesis of patterns and textures
几何引导的图案和纹理合成
  • 批准号:
    RGPIN-2020-04024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry-guided synthesis of patterns and textures
几何引导的图案和纹理合成
  • 批准号:
    RGPIN-2020-04024
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry-guided synthesis of patterns and textures
几何引导的图案和纹理合成
  • 批准号:
    RGPIN-2020-04024
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Content-aware processing of vector images
矢量图像的内容感知处理
  • 批准号:
    RGPIN-2014-06547
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Content-aware processing of vector images
矢量图像的内容感知处理
  • 批准号:
    RGPIN-2014-06547
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Content-aware processing of vector images
矢量图像的内容感知处理
  • 批准号:
    RGPIN-2014-06547
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Content-aware processing of vector images
矢量图像的内容感知处理
  • 批准号:
    RGPIN-2014-06547
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Tile-based methods for constructing Islamic geometric patterns
基于平铺的伊斯兰几何图案构建方法
  • 批准号:
    288206-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Computer graphics and computational calligraphy
计算机图形学和计算书法
  • 批准号:
    288206-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Computer graphics and computational calligraphy
计算机图形学和计算书法
  • 批准号:
    288206-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
  • 批准号:
    60803013
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328805
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2414603
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328803
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328804
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
SHF: Small: Sparsity-Aware Hardware Accelerators for Natural Language Processing with Transformers
SHF:小型:使用 Transformer 进行自然语言处理的稀疏感知硬件加速器
  • 批准号:
    2007362
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
CRII: III: Partition-aware Parallel Query Processing
CRII:III:分区感知并行查询处理
  • 批准号:
    1850348
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Elements: PASSPP: Provenance-Aware Scalable Seismic Data Processing with Portability
要素: PASSPP:具有可移植性的来源感知可扩展地震数据处理
  • 批准号:
    1931352
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Content-aware processing of vector images
矢量图像的内容感知处理
  • 批准号:
    RGPIN-2014-06547
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
SCH: INT: A Context-aware Cuff-less Wearable Ambulatory Blood Pressure Monitor using a Bio-Impedance Sensor Array
SCH:INT:使用生物阻抗传感器阵列的情境感知无袖可穿戴动态血压监测仪
  • 批准号:
    9982327
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了