The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
基本信息
- 批准号:RGPIN-2015-04007
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research involves ideas and problems from a part of mathematics, which is known as functional and harmonic analysis. My colleagues and I have developed several new ideas in representation theory of Banach algebras and applied them in diverse questions such as ideal structure of the second duals, topological centers, character amenability, and topologically introverted spaces.
The following is summary of my research program:
(1) Introverted spaces: Given a Banach algebra A and a topologically introverted subspace X of A*, Filali, Neufang, and I introduced the concept of subordinate representations and established a one-to-one correspondence between representations of A which are subordinate to X, and, the representations of the dual space X*. This phenomenon was previously only known in special cases. Our contribution established a general pattern, which can be applied to many different cases. We intend to characterize those representations of A that are subordinate to various introverted spaces X. This will help to obtain a better understanding of such spaces with the help of the coordinate functions of representations.
(2) Amenability and relative boundaries: For uniform algebras, various types of boundaries have been subject of extensive studies in the literature. However, it is only very recently that relative boundaries and special points within them (strong boundary points, peak points, etc) have been introduced for normed spaces. Recently, I have been able to show some applications of these ideas to the theory of character amenable Banach algebras. The nature of relative boundaries, their relation with introverted spaces, and coordinate functions are natural questions awaiting further studies.
(3) Topological centers: Filali, Neufang and I have developed a technique to obtain factorizations of operators in the group von Neumann algebras. Using this technique, we have been able to determine the topological centers of the group von Neumann algebras and the space of uniformly continuous functionals for certain groups. These ideas are very promising, and we intend to further develop the technique for a much wider range of spaces and their quotients, such as the space of p-pseudo measures and their quotients.
This research will be of interest to a wide group of mathematicians working in modern analysis. It will provide projects for graduate student’s master and PhD thesis. And it will benefit the advancement of a highly active area of research in modern mathematics.
我的研究涉及数学部分的思想和问题,即泛函分析和调和分析。我和我的同事在巴拿赫代数表示论中提出了一些新思想,并将它们应用于各种问题,例如二阶对偶的理想结构、拓扑中心、特征顺应性和拓扑内向空间。
以下是我的研究计划的摘要:
(1) 内向空间:给定一个 Banach 代数 A 和 A* 的拓扑内向子空间 X,Filali、Neufang 和 I 引入了从属表示的概念,并建立了从属于 X 的 A 的表示与对偶空间 X* 的表示之间的一一对应关系。这种现象以前只在特殊情况下才知道。我们的贡献建立了一个通用模式,可以应用于许多不同的情况。我们打算表征那些从属于各种内向空间 X 的 A 表示。这将有助于借助表示的坐标函数更好地理解这些空间。
(2) 适应性和相对边界:对于一致代数,各种类型的边界已成为文献中广泛研究的主题。然而,直到最近,相对边界和其中的特殊点(强边界点、峰值点等)才被引入规范空间。最近,我已经能够展示这些思想在特征巴拿赫代数理论中的一些应用。相对边界的性质、它们与内向空间的关系以及坐标函数是有待进一步研究的自然问题。
(3) 拓扑中心:Filali、Neufang 和我开发了一种获得冯诺依曼代数群中算子因式分解的技术。使用这种技术,我们已经能够确定冯诺依曼代数群的拓扑中心以及某些群的一致连续泛函空间。这些想法非常有前途,我们打算进一步开发适用于更广泛的空间及其商的技术,例如 p-伪测度的空间及其商。
这项研究将引起广大从事现代分析工作的数学家的兴趣。它将为研究生的硕士和博士论文提供项目。它将有利于现代数学这一高度活跃的研究领域的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SanganiMonfared, Mehdi其他文献
SanganiMonfared, Mehdi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SanganiMonfared, Mehdi', 18)}}的其他基金
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
- 批准号:
298449-2010 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
- 批准号:
298449-2010 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
- 批准号:
298449-2010 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
- 批准号:
298449-2010 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, homology, and duality
调和分析、同源性和对偶性
- 批准号:
298449-2010 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis on p-convolution operators and the generalized Fourier algebras locally compact groups
p-卷积算子和广义傅立叶代数局部紧群的调和分析
- 批准号:
298449-2004 - 财政年份:2008
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
- 批准号:
24K16908 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)