Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
基本信息
- 批准号:RGPIN-2016-04243
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last ten years have seen an explosion in the potential for topology to affect our everyday lives through electronics. When many of us think of topology, we think of a Mobius strip demonstration in high school, or an esoteric branch of mathematics, but in fact several recent discoveries have connected these abstract concepts with applications that may change the way electronics and information processing works in the future. For example, so-called topological insulators may be developed that enable computer chips to run with markedly lower energy loss.
An even more revolutionary connection between topology and electronics is the recent theoretical developments, and experimental hints, that new kinds of particles can be created in a table-top device that have very counterintuitive--but useful--topological characteristics. These would be particles like electrons, but unlike electrons they would retain a memory of the paths they have followed in the past. Take two of these particles, and move one around the other so it comes back to the same place. The particles look the same, but both particles' quantum mechanical states have completely changed due just to this looping operation. If these predictions turn out to be true, it will open new avenues for quantum computing that do not suffer from the same challenges of current approaches.
Here, we propose a head-on assault on the challenge of bringing topology to bear in electronics. Working closely with the two top groups in the world in this area, we aim in five years to make the first electronic devices whose operation depends on particles with non-trivial topologies like those described above.
在过去的十年里,拓扑通过电子设备影响我们日常生活的可能性出现了爆炸性增长。当我们中的许多人想到拓扑学时,我们会想到高中的莫比乌斯带状演示,或者是一个深奥的数学分支,但实际上,最近的几项发现将这些抽象概念与可能改变未来电子和信息处理工作方式的应用程序联系在一起。例如,可以开发所谓的拓扑绝缘体,使计算机芯片能够以显著较低的能量损耗运行。
拓扑学和电子学之间更具革命性的联系是最近的理论发展和实验暗示,即可以在桌面设备中创造出新类型的粒子,这种设备具有非常违反直觉但有用的拓扑特征。它们将是像电子一样的粒子,但与电子不同的是,它们将保留对它们过去走过的路径的记忆。拿出两个这样的粒子,绕着另一个移动,这样它就会回到同一个位置。这两个粒子看起来是一样的,但仅仅因为这种循环操作,两个粒子的量子力学状态就完全改变了。如果这些预测最终成为现实,它将为量子计算开辟新的途径,而不会受到当前方法所面临的同样挑战。
在这里,我们提议对将拓扑学应用于电子行业的挑战进行正面攻击。我们与这一领域的两家世界顶尖公司密切合作,目标是在五年内制造出第一批电子设备,其运行依赖于具有上述非平凡拓扑的粒子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Folk, Joshua其他文献
Direct entropy measurement in a mesoscopic quantum system
- DOI:
10.1038/s41567-018-0250-5 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:19.6
- 作者:
Hartman, Nikolaus;Olsen, Christian;Folk, Joshua - 通讯作者:
Folk, Joshua
Detecting the Universal Fractional Entropy of Majorana Zero Modes
- DOI:
10.1103/physrevlett.123.147702 - 发表时间:
2019-10-02 - 期刊:
- 影响因子:8.6
- 作者:
Sela, Eran;Oreg, Yuval;Folk, Joshua - 通讯作者:
Folk, Joshua
Folk, Joshua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Folk, Joshua', 18)}}的其他基金
Hybrid circuits as a thermodynamic measurement platform for 2D materials
混合电路作为二维材料的热力学测量平台
- 批准号:
RGPIN-2022-04725 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Variable temperature measurement system for quantum devices from strongly correlated and topological materials
强相关拓扑材料量子器件的可变温度测量系统
- 批准号:
RTI-2021-00273 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Research Tools and Instruments
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in the Physics of Nanostructures
加拿大纳米结构物理学研究主席
- 批准号:
1217385-2009 - 财政年份:2015
- 资助金额:
$ 5.39万 - 项目类别:
Canada Research Chairs
Quantum devices: engineering electronic coherence in nanostructures
量子器件:纳米结构中的工程电子相干性
- 批准号:
312445-2011 - 财政年份:2015
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in the Physics of Nanostructures
加拿大纳米结构物理学研究主席
- 批准号:
1000217385-2009 - 财政年份:2014
- 资助金额:
$ 5.39万 - 项目类别:
Canada Research Chairs
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1802167 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1802166 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1917025 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant
Quantum Devices in Topologically Non-Trivial Electronic Systems
拓扑非平凡电子系统中的量子器件
- 批准号:
RGPIN-2016-04243 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
- 批准号:
1741691 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant