Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
基本信息
- 批准号:1802166
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imperfections in materials, such as defects or edge roughness, often severely limit electronic device performance. This is especially problematic at the nanoscale where even a single atomic defect can drastically disrupt transport. Devices that are tolerant to these imperfections are thus the key to future technologies. The investigation of the fundamental properties and integration of two new defect-tolerant device concepts is proposed, enabled by novel 2D and 3D topological insulators (TIs), that exhibit unprecedented low-power, room temperature performance and functionalities only achievable using these unique materials. This tolerance to defects will enable nanoelectronics beyond the currently known limits and will specifically impact the national grand challenge of enabling ultra-low-power, post-silicon electronics and represent significant progress in an area of national technological strength, semiconductor electronics. A team of researchers with complementary expertise, including junior investigators complemented by accomplished senior professors, will address the challenges of the proposed work. This research will also broaden scientific and educational participation by creating a pipeline of pre-college and undergraduate students motivated to study science and engineering at universities through, for example, NSF-sponsored Research Experiences for Undergraduates (REU) programs and collaborations with national laboratories and industry partners. The researchers will also engage the public through science cafe programs where faculty members present their research in local pubs and restaurants.This collaborative research team will elucidate the fundamental science and technological implications of new topological insulator (TI)-based nanoelectronic device concepts that can operate at low-power, well above room temperature. Two complementary research threads will be pursued, both of which will enable a new, ultra-low-power, topologically protected device made of bismuth-based materials: 1) a 2D TI-based field-effect transistor that is immune to materials and device imperfections such as defects and line-edge roughness, and 2) a 3D TI-based tunneling device utilizing spin-filtering to exhibit negative differential resistance with unprecedented peak-to-valley ratio performance. TI growth by molecular beam epitaxy (Hinkle) will focus on 2D Bi and 3D Bi2Se3, which have predicted room-temperature device applications. Surface and edge state detection and chemical/structural properties will be investigated using in-situ techniques (Wallace). Theoretical studies including density functional theory (DFT), scattering, and mobility calculations (Vandenberghe) will be employed. Advanced 2- and 3-terminal devices will be fabricated (Banerjee) and these device characteristics will be evaluated in NAND gates. This research will provide materials and device concepts for advanced low-power, high-performance logic, memory, and even oscillatory neuromorphic applications using TIs, a class of devices which are extremely robust against defects/impurities. A TI and 2D materials property and benchmarking database through collaboration with NIST will also be established.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料中的缺陷,例如缺陷或边缘粗糙度,通常严重限制电子器件的性能。这在纳米尺度上尤其成问题,因为即使是单个原子缺陷也会严重破坏传输。 因此,能够容忍这些缺陷的设备是未来技术的关键。提出了两种新的缺陷容忍器件概念的基本特性和集成的研究,通过新颖的2D和3D拓扑绝缘体(TI)实现,其表现出前所未有的低功率,室温性能和功能,只有使用这些独特的材料才能实现。这种对缺陷的容忍度将使纳米电子学超越目前已知的限制,并将特别影响实现超低功耗、后硅电子学的国家重大挑战,并代表国家技术实力领域半导体电子学的重大进展。 一个由具有互补专长的研究人员组成的小组,包括由有成就的资深教授补充的初级调查人员,将应对拟议工作的挑战。 这项研究还将扩大科学和教育的参与,通过创建一个管道的大学预科和本科生的动机,通过在大学学习科学和工程,例如,NSF赞助的本科生研究经验(REU)计划和与国家实验室和行业合作伙伴的合作。 研究人员还将通过科学咖啡馆项目让公众参与进来,在那里,教职员工将在当地的酒吧和餐馆展示他们的研究。这个合作研究团队将阐明新的拓扑绝缘体(TI)为基础的纳米电子器件概念的基本科学和技术含义,该概念可以在低功率下运行,远高于室温。 两个互补的研究思路将被追求,这两个都将使一个新的,超低功耗,拓扑保护的设备由铋基材料制成:1)基于2D TI的场效应晶体管,其不受材料和器件缺陷(例如缺陷和线边缘粗糙度)的影响,以及2)利用自旋滤波以展现具有前所未有的峰谷比性能的负微分电阻的3D TI基隧穿器件。 分子束外延(Hinkle)的TI生长将集中在2D Bi和3D Bi 2Se 3上,这已经预测了室温器件的应用。 表面和边缘状态检测和化学/结构特性将使用原位技术(华莱士)进行调查。 理论研究,包括密度泛函理论(DFT),散射和迁移率计算(Vandenberghe)将被采用。 先进的2端和3端器件将被制造(Banerjee),这些器件的特性将在NAND门中进行评估。这项研究将提供先进的低功耗,高性能的逻辑,存储器,甚至振荡neuromorphic应用程序使用TI的材料和设备的概念,一类设备,这是非常强大的缺陷/杂质。 通过与NIST的合作,还将建立TI和二维材料属性和基准数据库。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hinkle其他文献
Materials for interconnects
互连材料
- DOI:
10.1557/s43577-021-00192-3 - 发表时间:
2021-10-28 - 期刊:
- 影响因子:4.900
- 作者:
Daniel Gall;Judy J. Cha;Zhihong Chen;Hyeuk-Jin Han;Christopher Hinkle;Joshua A. Robinson;Ravishankar Sundararaman;Riccardo Torsi - 通讯作者:
Riccardo Torsi
Christopher Hinkle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hinkle', 18)}}的其他基金
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328908 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
- 批准号:
2324172 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
QuIC-TAQS: Deterministically Placed Nuclear Spin Quantum Memories for Entanglement Distribution
QuIC-TAQS:用于纠缠分布的确定性放置的核自旋量子存储器
- 批准号:
2137828 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
- 批准号:
1921818 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1917025 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI Acquisition: High-Resolution and Ultra-High Speed X-Ray Diffractometer for Structure, Crystal Quality, and Preferred Orientation Determination
MRI 采集:用于结构、晶体质量和择优取向测定的高分辨率和超高速 X 射线衍射仪
- 批准号:
1531811 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI Acquisition: Compound Semiconductor Reactive Ion Etcher for Functionally Diverse Materials, Structures and Devices
MRI 采集:用于功能多样的材料、结构和器件的化合物半导体反应离子蚀刻机
- 批准号:
1039988 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
多光束协同增材制造光热流耦合熔池动力学与缺陷跨尺度形成机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于主-被动协同式超声的储氢气瓶纤维缠绕层基体脆裂与分层缺陷定位与评估方法研究
- 批准号:JCZRLH202500468
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
车辆漆面缺陷机器人协同自适应磨抛加工
技术研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
缺陷型氧化钽纳米片负载金属团簇光-热协同
催化 CO2 还原研究
- 批准号:Y24E020054
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
钙钛矿型压电陶瓷晶格畸变与缺陷态对高温电学特性的协同调控研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于富空位缺陷耦合异相分级微结构协同增强金属硫族化物储钠性
能的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
双缺陷MoS2-x@BiVO4-x光催化废水制氢协同抗生素降解机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
靶向抑制 BRAT1 协同增敏 PARP 抑制剂在非
同源重组修复缺陷胰腺癌中的应用及其分子
机制研究
- 批准号:TGY24H160103
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
缺陷态 WO3/ZnIn2S4 光催化固氮体系构筑及
其协同增效机制研究
- 批准号:ZY24E020003
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于数据协同的函数级缺陷定位及排序优化研究
- 批准号:
- 批准年份:2024
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Biological production and enzymatic processing for defect-free, scalable nucleic-acid circuits
合作研究:FET:中:无缺陷、可扩展核酸电路的生物生产和酶处理
- 批准号:
2106696 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Biological production and enzymatic processing for defect-free, scalable nucleic-acid circuits
合作研究:FET:中:无缺陷、可扩展核酸电路的生物生产和酶处理
- 批准号:
2106695 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2005006 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2005064 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902644 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
- 批准号:
1928788 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902623 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
- 批准号:
1928784 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Defect Immune, Topologically Protected Devices for Ultra-Low Power Electronics
合作研究:用于超低功率电子器件的缺陷免疫、拓扑保护器件
- 批准号:
1802167 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant