Hyper-Frequency Viscoelastic Spectroscopy for Advanced Composites and Biomaterials

先进复合材料和生物材料的高频粘弹性光谱

基本信息

  • 批准号:
    RTI-2017-00114
  • 负责人:
  • 金额:
    $ 8.58万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The modification of viscoelastic materials to meet engineering specifications is often based on a trial-and-error approach because there is a lack of understanding of their dynamic behavior at solid states. The novel technique enabled by the proposed equipment will enable an in-depth study of these behaviors, not possible through existing techniques, allowing us to modify materials to the extent required for high-end applications in advanced materials and manufacturing sectors (e.g. electronics, automotive, aerospace, healthcare.) We request funding for a hyper-frequency viscoelastic spectroscopy (HFVS) instrument, which will enable us to perform a newly-developed technique for the contactless and non-destructive mechanical characterization of advanced composites and biomaterials under dynamic conditions. Dynamic mechanical characterization is essential to the applicants’ research programs investigating advanced composites tailored at micro/nano scales and biomaterials including soft hydrogels, biological tissues, biofilms, smart adhesive, foods, rigid bone-like materials, rubbers, and structural composites in the fields of chemical engineering, mechanical engineering, system design engineering, and chemistry. However, our current capabilities are destructive, time-consuming, and limited in terms of the testing ranges of elastic modules and excitation frequency range, which prevents us from acquiring in-depth scientific insights for modification of the viscoelastic properties of our materials. Contactless and ultrafast measurements are ideally suited for materials that are fragile and time-sensitive, such as hydrogels, biofilm, and adhesive micro/nano structure. The proposed equipment will greatly enhance a number of on-going research programs by (a) enabling characterization of dynamic mechanical properties of a variety of materials (both biological and synthetic) with a range of viscoelasticities, (b) enabling study of the behavior of multifunctional architectured materials (biomimetic materials and 3D-printed architectures), (c) addressing a critical need for advancing computational modeling and simulation of advanced materials used in vehicles for the protection of humans in car collisions. These capabilities will allow us to perform research at the forefront of the field and boost our world-class programs to the next level of sophistication. This state-of-art equipment is highly versatile, and has vast potential for unique training opportunities to our graduate students and researchers. During the lifetime of the instrument, it is expected that >400 HQP will be trained in measuring the dynamic mechanical properties of composites and biomaterials. These knowledge and skills are in high demand in such manufacturing sectors as electronics, automotive, aerospace, biomedical and healthcare materials.
粘弹性材料的修改以满足工程规范通常是基于试错法,因为缺乏对它们在固体状态下的动态行为的了解。由拟议设备实现的新技术将使我们能够深入研究这些行为,这是现有技术无法实现的,使我们能够修改材料,达到先进材料和制造行业(例如电子、汽车、航空航天、医疗保健)高端应用所需的程度。我们请求资助一台超高频粘弹性光谱仪(HFVS),这将使我们能够执行一项新开发的技术,用于在动态条件下对先进复合材料和生物材料进行非接触式和非破坏性的机械表征。 动态力学特性对于申请人研究微米/纳米尺度的先进复合材料和生物材料至关重要,这些材料包括化学工程、机械工程、系统设计工程和化学领域的软水凝胶、生物组织、生物膜、智能粘合剂、食品、硬骨材料、橡胶和结构复合材料。然而,我们目前的能力是破坏性的、耗时的,而且在弹性模块的测试范围和激励频率范围方面是有限的,这阻碍了我们对材料粘弹性性质的修改获得深入的科学见解。非接触式和超快测量非常适合于易碎和时间敏感的材料,如水凝胶、生物膜和粘附性微/纳米结构。拟议中的设备将极大地增强一些正在进行的研究项目,方法是:(A)能够表征具有各种粘弹性的各种材料(包括生物和合成材料)的动态机械性能;(B)能够研究多功能结构材料(仿生材料和3D打印结构)的行为;(C)满足对车辆中用于保护汽车碰撞中的人类的先进材料进行计算建模和模拟的迫切需求。 这些能力将使我们能够在该领域的前沿进行研究,并将我们的世界级程序提升到下一级的复杂程度。这种最先进的设备用途广泛,为我们的研究生和研究人员提供独特的培训机会具有巨大的潜力。在仪器的使用寿命期间,预计将对>400 HQP进行培训,以测量复合材料和生物材料的动态机械性能。电子、汽车、航空航天、生物医学和医疗保健材料等制造行业对这些知识和技能的需求很高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhao, Boxin其他文献

A hybrid material that reversibly switches between two stable solid states
  • DOI:
    10.1038/s41563-019-0434-0
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Yang, Fut (Kuo);Cholewinski, Aleksander;Zhao, Boxin
  • 通讯作者:
    Zhao, Boxin
Triple non-covalent dynamic interactions enabled a tough and rapid room temperature self-healing elastomer for next-generation soft antennas
  • DOI:
    10.1039/d0ta06613c
  • 发表时间:
    2020-12-21
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Si, Pengxiang;Jiang, Fan;Zhao, Boxin
  • 通讯作者:
    Zhao, Boxin
Antifungal prophylactic effectiveness and intrapulmonary concentrations of voriconazole versus posaconazole in lung transplant recipients.
  • DOI:
    10.1093/mmy/myac041
  • 发表时间:
    2022-09-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ju, Chunrong;Lian, Qiaoyan;Chen, Ao;Zhao, Boxin;Zhou, Shouning;Cai, Yuhang;Xie, Hui;Wei, Li;Li, Shiyue;He, Jianxing
  • 通讯作者:
    He, Jianxing
Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement
The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase IIα and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells
  • DOI:
    10.1016/j.ejphar.2017.05.026
  • 发表时间:
    2017-08-15
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Cai, Yun;Zhao, Boxin;Li, Guofeng
  • 通讯作者:
    Li, Guofeng

Zhao, Boxin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhao, Boxin', 18)}}的其他基金

Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2022
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2021
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPAS-2019-00115
  • 财政年份:
    2020
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2020
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2019
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPAS-2019-00115
  • 财政年份:
    2019
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Biomimetic Micro/Nano-structured Adhesive Materials with "Smart" Properties
具有“智能”特性的仿生微纳结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2018
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2017
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2016
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Discovery Grants Program - Individual
Bonding studies for thermally sprayed copper alloy antimicrobial coatings
热喷涂铜合金抗菌涂层的结合研究
  • 批准号:
    478368-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Engage Plus Grants Program

相似国自然基金

转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Continuing Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
  • 批准号:
    2340973
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Continuing Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Research Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
  • 批准号:
    MR/Y011775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Fellowship
PopHorn: A deployable folding horn antenna for low frequency space-based applications
PopHorn:适用于低频天基应用的可展开折叠喇叭天线
  • 批准号:
    ST/Y509942/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
  • 批准号:
    2339731
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Continuing Grant
ERI: Biological Effects of Low-Frequency, Low-Intensity Ultrasound on Endothelial Cell and Macrophage Co-Culture
ERI:低频、低强度超声对内皮细胞和巨噬细胞共培养的生物学效应
  • 批准号:
    2347558
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Standard Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
  • 批准号:
    2340268
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Continuing Grant
High Frequency Channel for CHAI
CHAI 高频通道
  • 批准号:
    530175728
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Major Research Instrumentation
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
  • 批准号:
    10089417
  • 财政年份:
    2024
  • 资助金额:
    $ 8.58万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了