The Satake transform and the trace formula
Satake变换和迹公式
基本信息
- 批准号:RGPIN-2017-03784
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Satake transform and L-functions******Classically, L-functions with Euler products are an indispensable tool for investigating ***properties of prime numbers, and more generally properties of complicated structures ***occurring in number theory. They were introduced by Dirichlet in the early nineteenth ***century, following observations of the Swiss mathematicain Leonhard Euler. Since then ***various similar functions have been introduced by many mathematicians, often with very ***appealing applications, but it was only in the winter of 1966/1967 that the Canadian ***mathematician Robert Langlands defined for the first time the most general known form ***of L-functions with Euler products, associated simultaneously to automorphic forms and***representations of Galois groups. Since then, a number of cases of his conjectures ***regarding these functions have been verified, but until very recently essentially all paths ***to further cases have come to dead ends.******Langlands himself suggested around 2000 a possible way to deal with the problem, but for a ***long time how to follow his suggestions was not very clear. In recent years, however, the ***Fields medallist Bao Chau Ngo and others have taken up this idea in the form of utilization ***of local functions not necessarily of compact support in James Arthur's extension of the ***Selberg Trace Formula. The functions concerned are called `basic functions'. They are***parametrized by irreducible representations r of Langlands' L-groups, and they contain, ***among others, the functions on a p-adic group bi-invariant on left and right by a maximal ***compact subgroup whose Satake transform is the L-function associated by Langlands to r. ******There are by now several characterizations of basic functions, but all of them are rather ***abstract. My contribution so far has been to describe all of them in completely explicit terms ***in the simplest case of GL(2), and to find by computation conjectural and non-trivial ***examples for a few other groups of low rank. I hope to find a pattern to these examples ***so as to make a conjecture for all cases. Early stages of this work are reported on in a paper *** that will to appear soon in an issue of the Bulletin of the Iranian Mathematical Society***honouring the work of the Iranian-American Freydoon Shahidi. One of the surprising ***by-products of this has been a number of intriguing examples of how the symmetric powers ***of irreducible representations of complex groups decompose, in which hitherto unseen ***phenomena appear. This is a classical question, first raised in some form over a hundred ***years ago. It is not at all clear to what extent these will become a real theory, but results so ***far are very promising. I expect these results to be applied soon by James Arthur and ***Salim Ali Altug in applications to the Trace Formula.**
佐塔克变换和L函数经典的具有欧拉积的L函数是研究素数的*性质,以及更一般的数论中发生的复杂结构的*性质所不可缺少的工具。它们是由狄里克莱特在十九世纪初根据瑞士数学家莱昂哈德·欧拉的观察而提出的。从那时起,*各种类似的函数被许多数学家引入,通常都有非常*吸引人的应用,但直到1966/1967年冬天,加拿大*数学家罗伯特·朗兰兹才首次定义了L的最一般形式*-具有欧拉积的函数,它同时与伽罗瓦群的自同构形式和*表示相联系。从那时起,他关于这些函数的猜想的一些案例已经被证实,但直到最近,几乎所有通向进一步案例的途径都走到了死胡同。朗兰兹本人在2000年左右提出了一种可能的方法来处理这个问题,但在很长一段时间里,如何遵循他的建议并不是非常清楚。然而,近年来,*菲尔兹奖牌获得者Bao Chau Ngo和其他人采用了这个想法,在James Arthur对*Selberg轨迹公式的扩展中,利用了*不一定是紧凑支持的局部函数。所涉及的功能称为“基本功能”。它们是由朗兰兹的L群的不可约表示r参数化为*的,并且它们包含*p-ady群上的函数由一个极大的*紧子群左右双向不变,其Satake变换是由朗兰兹到r相联系的L函数。到目前为止,我的贡献是在GL(2)的最简单情况下以完全显式的术语*描述它们,并通过计算为其他几个低排名的群找到猜想的和非平凡的*例子。我希望对这些例子找到一种模式*,以便对所有情况做出猜测。这项工作的早期阶段被报道在一篇*论文中,这篇论文将很快出现在一期《伊朗数学学会公报》*上,以表彰伊朗裔美国人弗雷登·沙希迪的工作。其中一个令人惊讶的副产品是一些有趣的例子,说明复杂群的不可约表示的对称幂*是如何分解的,其中出现了迄今未见的*现象。这是一个经典的问题,在一百多年前以某种形式首次提出。目前还不清楚这些理论将在多大程度上成为一个真正的理论,但到目前为止,结果是非常有希望的。我希望詹姆斯·阿瑟和*萨利姆·阿里·阿尔图格很快就能将这些结果应用于迹公式的应用。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Casselman, William其他文献
Casselman, William的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Casselman, William', 18)}}的其他基金
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
- 批准号:
8472-2011 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
- 批准号:
8472-2011 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
- 批准号:
8472-2011 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
- 批准号:
8472-2011 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
- 批准号:
8472-2011 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
- 批准号:
8472-2006 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
视觉智能Shapelet Transform驱动的SHM数据关联分析与域自适应迁移机制深度学习
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Supplement for Role of Environmental Weathering and Gastrointestinal Digestion on the Bioavailability and Toxicity of Microplastic and Cadmium Mixtures
补充环境风化和胃肠消化对微塑料和镉混合物的生物利用度和毒性的作用
- 批准号:
10854398 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Explicit Fourier transform of trace formulas and its applications to arithmetic
迹公式的显式傅里叶变换及其在算术中的应用
- 批准号:
15K04795 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of operator inequality and spectrum using computer
算子不等式与谱的计算机研究
- 批准号:
14540190 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Life Sciences Mass Spectrometry Facility (LSMSF-SR)
生命科学质谱设备 (LSMSF-SR)
- 批准号:
10223205 - 财政年份:1998
- 资助金额:
$ 1.02万 - 项目类别:
Life Sciences Mass Spectrometry Facility (LSMSF-SR)
生命科学质谱设备 (LSMSF-SR)
- 批准号:
10658889 - 财政年份:1998
- 资助金额:
$ 1.02万 - 项目类别:














{{item.name}}会员




