Emerging devices integration above CMOS circuit
CMOS电路之上的新兴器件集成
基本信息
- 批准号:RGPIN-2014-04293
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last 5 decades, the microelectronic industry has been able to drastically increase the computing performance while reducing the cost-per-chip. This outstanding improvement is essentially due to the scaling of the CMOS (Complementary Metal Oxide Semiconductor) technology. The International Technology Roadmap for Semiconductors (ITRS) anticipates that this trend or his equivalent in performance will continue for several years resulting ultimately in 5-7 nm gate transistors by 2025. This projection challenges the most optimistic prediction of transistor utilizing the CMOS physics for operation. Thus, innovative solutions must be introduced for post-CMOS technology in the midterm. Furthermore, the power density tendency of assembled modules is reaching level where standard air cooling is not adequate anymore. This energy consumption issue is becoming the predominant factor for introducing new devices. The industry is pursing different approaches for post-CMOS and equivalent performance enhancement. One solution for the former issue is the introduction of the very promising tunnel field effect transistor. For the latter one, tremendous effort have been deployed to increase the number of device by mm2 through 3D integration at the chip level. This proposed research program will address both issues by investigating innovative low-power nanoelectronics device that can be monolithically integrated in 3D with CMOS technology to investigate new functionalities and increase performance of logic and memory devices. The global objective is not to directly replace CMOS technology but rather complement it using back-end-of-line compatible devices. Such approach allows to i) increase devices density due to 3D integration, ii) reduce latency from shorter interconnections, iii) globally reduce energy consumption by reducing parasitic loss. During this 5 years project, we will develop two low-power nanoelectronic devices integrated above CMOS circuit. The silicon nanocrystal tunnel field effect transistor combines our nanodamascene process and amorphous silicon. The potential outcome of such device will be the realization of a low-power transistor operating at voltage below 0.5V with extremely low Ioff current due to tunneling through undoped channel. The second nanoelectronic device will also combine our nanodamascene process with indium oxide nanocrystals to realize embedded non-volatile memory. This two terminals memory has the advantage to be highly scalable and the potential to be embedded with microprocessor. The scientific and social impact of this research is ranging from more energy efficient portable electronic (tablet, smart phone) to universal memory (single memory type regrouping DRAM, hard-disk and flash memory).
在过去的50年中,微电子工业已经能够大幅提高计算性能,同时降低每个芯片的成本。这种显著的改进主要是由于CMOS(互补金属氧化物半导体)技术的缩放。国际半导体技术路线图(ITRS)预计,这种趋势或其性能相当的趋势将持续数年,最终到2025年将出现5-7 nm栅极晶体管。这一预测挑战了利用CMOS物理进行操作的晶体管的最乐观预测。因此,必须在中期为后CMOS技术引入创新的解决方案。此外,组装模块的功率密度趋势正在达到标准空气冷却不再足够的水平。这种能源消耗问题正成为引入新设备的主要因素。业界正在寻求不同的方法来提高后CMOS和等效性能。前一个问题的一个解决方案是引入非常有前途的隧道场效应晶体管。对于后者,已经部署了巨大的努力,以通过芯片级的3D集成将器件数量增加mm 2。 这项研究计划将通过研究创新的低功耗纳米电子器件来解决这两个问题,这些器件可以通过CMOS技术在3D中单片集成,以研究新的功能并提高逻辑和存储器件的性能。 全球目标不是直接取代CMOS技术,而是使用后端兼容器件对其进行补充。这种方法允许i)由于3D集成而增加设备密度,ii)减少来自较短互连的延迟,iii)通过减少寄生损耗来全局地减少能量消耗。在这五年的计画中,我们将开发两种低功率奈米电子元件,并整合于CMOS电路之上。硅纳米隧道场效应晶体管结合了我们的纳米工艺和非晶硅。这种器件的潜在结果将是实现在低于0.5V的电压下工作的低功率晶体管,由于通过未掺杂沟道的隧穿,具有极低的Ioff电流。 第二个纳米电子器件也将联合收割机结合我们的纳米工艺与氧化铟纳米晶体,实现嵌入式非易失性存储器。这种双端存储器具有高度可扩展性和嵌入微处理器的潜力。这项研究的科学和社会影响范围从更节能的便携式电子产品(平板电脑,智能手机)到通用存储器(单一存储器类型重组DRAM,硬盘和闪存)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Drouin, Dominique其他文献
Voltage-dependent synaptic plasticity: Unsupervised probabilistic Hebbian plasticity rule based on neurons membrane potential.
- DOI:
10.3389/fnins.2022.983950 - 发表时间:
2022 - 期刊:
- 影响因子:4.3
- 作者:
Garg, Nikhil;Balafrej, Ismael;Stewart, Terrence C.;Portal, Jean-Michel;Bocquet, Marc;Querlioz, Damien;Drouin, Dominique;Rouat, Jean;Beilliard, Yann;Alibart, Fabien - 通讯作者:
Alibart, Fabien
Structural plasticity for neuromorphic networks with electropolymerized dendritic PEDOT connections.
- DOI:
10.1038/s41467-023-43887-8 - 发表时间:
2023-12-08 - 期刊:
- 影响因子:16.6
- 作者:
Janzakova, Kamila;Balafrej, Ismael;Kumar, Ankush;Garg, Nikhil;Scholaert, Corentin;Rouat, Jean;Drouin, Dominique;Coffinier, Yannick;Pecqueur, Sebastien;Alibart, Fabien - 通讯作者:
Alibart, Fabien
Time Required for Gross Examination of Routine Second and Third Trimester Singleton Placentas by Pathologists' Assistants.
- DOI:
10.1177/10935266231196015 - 发表时间:
2023-09 - 期刊:
- 影响因子:1.9
- 作者:
Horn, Christopher;Engel, Nicole;Drouin, Dominique;Haley, John;Holder, Cameron;Hung, Lina;Royall, Lorraine;McInnis, Patricia;de Koning, Lawrence;Chan, Elaine S. - 通讯作者:
Chan, Elaine S.
Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al2O3/TiO2resistive memories
- DOI:
10.1088/1361-6528/aba6b4 - 发表时间:
2020-10-30 - 期刊:
- 影响因子:3.5
- 作者:
Beilliard, Yann;Paquette, Francois;Drouin, Dominique - 通讯作者:
Drouin, Dominique
Nanometer-resolution electron microscopy through micrometers-thick water layers.
- DOI:
10.1016/j.ultramic.2010.04.001 - 发表时间:
2010-08 - 期刊:
- 影响因子:2.2
- 作者:
de Jonge, Niels;Poirier-Demers, Nicolas;Demers, Hendrix;Peckys, Diana B.;Drouin, Dominique - 通讯作者:
Drouin, Dominique
Drouin, Dominique的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Drouin, Dominique', 18)}}的其他基金
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
NSERC/IBM Industrial Research Chair in High-Performance Heterogeneous Integration
NSERC/IBM 高性能异构集成工业研究主席
- 批准号:
463311-2018 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Industrial Research Chairs
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
- 批准号:
559532-2020 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
Multi-user and low-cost silicon interposer platform for bio/quantum systems
适用于生物/量子系统的多用户低成本硅中介层平台
- 批准号:
566688-2021 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
- 批准号:
559532-2020 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
NSERC/IBM Industrial Research Chair in High-Performance Heterogeneous Integration
NSERC/IBM 高性能异构集成工业研究主席
- 批准号:
463311-2018 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Industrial Research Chairs
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Optical fiber hygrometer system integration
光纤湿度计系统集成
- 批准号:
543506-2019 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Engage Grants Program
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Smart Cuff: Multi-Parameter Hemodynamic Monitoring via a Single Convenient Device
智能袖带:通过单个便捷设备进行多参数血流动力学监测
- 批准号:
10583061 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Point-of-Care Diagnosis of Esophageal Cancer in LMICs
中低收入国家食管癌的即时诊断
- 批准号:
10649166 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits
将 MR 引导聚焦超声系统用于人体首个疼痛回路精确神经调节
- 批准号:
10805159 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Promoting Functional Neck Motion in Patients with Cerebral Palsy using a Robotic Neck Brace
使用机器人颈托促进脑瘫患者的颈部功能性运动
- 批准号:
10742373 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Integration of Compliance Chambers into Diaphragm Displacement Pump to Double the Pumping Flow of Pediatric Paracorporeal Pulsatile Ventricular Assist Device
将顺应室集成到隔膜排量泵中,使儿科体外脉动心室辅助装置的泵流量加倍
- 批准号:
10761399 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
An Isothermal Method to Amplify RNA from Bloodborne Viruses
扩增血源性病毒 RNA 的等温方法
- 批准号:
10760602 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Noncontact Remote Monitoring for the Detection of Opioid-Induced Respiratory Depression
非接触式远程监测检测阿片类药物引起的呼吸抑制
- 批准号:
10684530 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
- 批准号:
10632948 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别: