Principal component analysis based algorithms for ECG recordings

基于主成分分析的心电图记录算法

基本信息

  • 批准号:
    524089-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The P-QRS-T time waves recorded in electrocardiogram (ECG) conceal information vital for detecting the**cardiovascular disease, and much effort has been made to develop ECG-based methods that distinguish regular**from irregular heartbeats, and detect and classify heart arrhythmia. Research and development in this field have**stayed active for decades as any improvement in accuracy, speed, and robustness in detection and classification**capabilities is highly desirable for enhancing cardiac health monitoring systems.**CardioComm Solutions Inc. has been in medical diagnostic industry as an FDA cleared, ISO certified, and**Health Canada/CE approved company for development, sales, and marketing of medical software and devices.**The company's specialization is in the software engineering of computer based ECG management and reporting**software. The company is currently looking to enhance and extend its software for ECG analysis, and is**especially interested in developing algorithms for automatic analysis of ECG recordings coming from a variety**of ECG devices with different data sizes of varying quality and sampling rates. A suite of techniques originated**from multivariate analysis in statistics, known as principal component analysis (PCA), has been selected by the**company as a foundational tool for ECG analysis. This proposal will solve the major issues arising from the**company's development and practice in this area include (i) universality of the PCA subspaces trained using**MIT-BIH arrhythmia database; (ii) techniques to handle ECG recordings with different sampling rates; (iii)**identification of optimal methods for clustering QRS complexes; and (iv) existence of intrinsic connections, if**any, between certain parts (in terms shape and size) of PCA feature space and known QRS morphologies. The**expected outcome will significantly enhance CardioComm's solution portfolios and provide automated and**accurate ECG analysis to consumers.
心电图记录的P-QRS-T时间波隐藏了对检测心血管疾病至关重要的信息,人们已经努力开发基于心电图的方法来区分正常和不规则的心跳,并检测和分类心律失常。这一领域的研究和发展已经活跃了几十年,因为在检测和分类能力的准确性、速度和稳健性方面的任何改进都是增强心脏健康监测系统所迫切需要的。**CardioComm Solutions Inc.作为FDA批准,ISO认证和**加拿大卫生部/CE批准的医疗软件和设备开发,销售和营销公司,一直在医疗诊断行业。**公司专业从事基于计算机的心电管理和报告软件工程**软件。该公司目前正在寻求增强和扩展其ECG分析软件,并对开发用于自动分析来自各种ECG设备的ECG记录的算法特别感兴趣,这些设备具有不同的数据大小,不同的质量和采样率。一套源自统计学多变量分析的技术,被称为主成分分析(PCA),已被**公司选择作为心电图分析的基础工具。该提案将解决**公司在该领域的发展和实践中出现的主要问题,包括:(i)使用**MIT-BIH心律失常数据库训练的PCA子空间的通用性;(ii)处理不同采样率心电记录的技术;**确定QRS复合物聚类的最佳方法;(iv) PCA特征空间的某些部分(就形状和大小而言)与已知QRS形态之间存在内在联系(如果有的话)。预期结果将显著增强CardioComm的解决方案组合,并为消费者提供自动化和准确的心电图分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, WuSheng其他文献

Lu, WuSheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, WuSheng', 18)}}的其他基金

Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
  • 批准号:
    4062-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
  • 批准号:
    4062-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
  • 批准号:
    4062-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
  • 批准号:
    4062-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
  • 批准号:
    4062-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
  • 批准号:
    4062-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
  • 批准号:
    4062-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
  • 批准号:
    4062-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
  • 批准号:
    4062-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
  • 批准号:
    4062-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

一类两分支非线性浅水波方程的若干问题研究
  • 批准号:
    11101337
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
浸润特性调制的统计热力学研究
  • 批准号:
    21173271
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152704
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152687
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
  • 批准号:
    535113-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Establishment of molecular design guidelines for enzyme mutants by principal component analysis aiming at improving enzyme electrochemical reaction
通过主成分分析建立酶突变体分子设计指南,旨在改善酶电化学反应
  • 批准号:
    21K14782
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
  • 批准号:
    535113-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of Orthonormal principal component analysis for categorical data and its applications
分类数据正交主成分分析的发展及其应用
  • 批准号:
    20K03303
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
  • 批准号:
    535113-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Kernel principal component analysis in high dimension, low sample size and its applications
高维、小样本核主成分分析及其应用
  • 批准号:
    19J10175
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了