Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms

使用数据挖掘和机器学习算法改进水管破裂的基础设施评估

基本信息

  • 批准号:
    RGPIN-2018-04623
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Maintaining the integrity of buried water infrastructure is at the forefront of priority issues for municipalities across Canada. However, substantial portions of our buried water infrastructure are in need of repair/ rehabilitation, and possible replacement, all of which require significant expenditures. Increased vulnerability to imposed stresses as a result of climate change and urban densification, and avoiding compromised water quality, are examples of challenges complicating the prioritization of investments.*** In response, this research proposal is focused on developing guidance procedures to most effectively direct such expenditures. The merits of dramatically improved data mining and machine learning algorithms, and including the potential to improve the utilization of information now available from evolving smart data acquisition procedures becoming available, will be explored in this research.*** Research insights will include the merits of prioritization to include factors such as health risks, external factors of adjacency of high-cost impacts should pipe failure occur, climate change influencing water demand patterns, urban intensification and the concomitant increased demands that will arise, all of which contribute to the merits of a performance-based management approach for failure prediction assessments.*** Data mining models will be used to improve discovery of patterns, and machine language models will be employed to improve prediction efforts, all with the intent to improve pipe break prediction modeling and to provide better prioritization approaches for types of pipe rehabilitation. The utility of smart infrastructure technology will also be explored to determine the potential to decrease water distribution issues of pipe breaks and maintenance issues.*** This research will train HQP students in municipal engineering water infrastructure (condition evaluation, lifecycle costing, lifecycle prediction, deterioration modeling, machine learning, and data mining approaches). The proposed research will provide direct funding to assist in the training of three PhD and four masters students,one U/G, and a post-doc. The goal is to include the mentoring of grad students in research management and effective communication skills in this critical area of Canadian needs.
保持地下水基础设施的完整性是加拿大各城市优先考虑的问题。 然而,我们的地下水基础设施的很大一部分需要维修/恢复,并可能更换,所有这些都需要大量的支出。由于气候变化和城市密集化,更容易受到压力的影响,以及避免水质受损,这些都是使投资优先次序复杂化的挑战的例子。 对此,本研究建议的重点是制定指导程序,以最有效地指导此类支出。 本研究将探讨大幅改进的数据挖掘和机器学习算法的优点,包括提高对目前可从不断发展的智能数据采集程序中获得的信息的利用率的潜力。 研究见解将包括优先考虑的优点,包括健康风险等因素,如果管道故障发生,高成本影响的外部因素,影响水需求模式的气候变化,城市集约化以及随之而来的需求增加,所有这些都有助于故障预测评估的绩效管理方法的优点。 数据挖掘模型将用于改进模式的发现,机器语言模型将用于改进预测工作,所有这些都旨在改进管道破裂预测建模,并为管道修复类型提供更好的优先级排序方法。 还将探索智能基础设施技术的效用,以确定减少管道破裂和维护问题的水分配问题的潜力。 这项研究将培养HQP学生在市政工程水基础设施(条件评估,生命周期成本,生命周期预测,退化建模,机器学习和数据挖掘方法)。 拟议的研究将提供直接资助,以协助培训三名博士和四名硕士生,一名U/G和一名博士后。 其目标是包括格拉德生的指导研究管理和有效的沟通技巧,在加拿大的需求这一关键领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McBean, Edward其他文献

First Nations' water sustainability and Security Strategy: Tools and methodologies for community-driven processes for water treatment in Indigenous communities
  • DOI:
    10.1016/j.techsoc.2017.04.004
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Black, Kerry;McBean, Edward
  • 通讯作者:
    McBean, Edward
A risk-based approach to sanitary sewer pipe asset management
  • DOI:
    10.1016/j.scitotenv.2014.10.040
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Baah, Kelly;Dubey, Brajesh;McBean, Edward
  • 通讯作者:
    McBean, Edward
Increased Indigenous Participation in Environmental Decision-Making: A Policy Analysis for the Improvement of Indigenous Health
Drinking water supply systems: decreasing advisories and improving treatment through real-time water quality monitoring
Forecasting impacts of climate change on changes of municipal wastewater production in wastewater reuse projects
  • DOI:
    10.1016/j.jclepro.2021.129790
  • 发表时间:
    2021-11-24
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Shakeri, Hossein;Motiee, Homayoun;McBean, Edward
  • 通讯作者:
    McBean, Edward

McBean, Edward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McBean, Edward', 18)}}的其他基金

Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
  • 批准号:
    RGPIN-2018-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
  • 批准号:
    RGPIN-2018-04623
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Blue-green algae mitigation strategies for urban lakes
城市湖泊蓝绿藻缓解策略
  • 批准号:
    566271-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Watershed Water Security Assessment Under Climate Change and Urbanization Pressures
气候变化和城市化压力下的流域水安全评估
  • 批准号:
    549242-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Long Term Care Disinfection Protocols for COVID-19
COVID-19 长期护理消毒方案
  • 批准号:
    553721-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
  • 批准号:
    RGPIN-2018-04623
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Using AI to predict COVID19 impacts on Canada's health system
使用人工智能预测新冠肺炎 (COVID19) 对加拿大卫生系统的影响
  • 批准号:
    549866-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Watershed Water Security Assessment Under Climate Change and Urbanization Pressures
气候变化和城市化压力下的流域水安全评估
  • 批准号:
    549242-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Using Wastewater Surveillance for Detection of COVID-19 Virus
利用废水监测检测 COVID-19 病毒
  • 批准号:
    554592-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Watershed Modelling to Enhance Water Security for the Region of Peel
流域建模可增强皮尔地区的水安全
  • 批准号:
    532006-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Engage Grants Program

相似海外基金

Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
  • 批准号:
    2744014
  • 财政年份:
    2026
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Studentship
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
  • 批准号:
    NE/Z503502/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Cooperative Agreement
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Research Infrastructure: KCV EDGE (Equitable and Diverse Grant Ecosystem)
研究基础设施:KCV EDGE(公平且多样化的资助生态系统)
  • 批准号:
    2345142
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Cooperative Agreement
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
  • 批准号:
    2341622
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了