Extending educational technologies with user models of cognitive, affective and meta-cognitive student states

通过认知、情感和元认知学生状态的用户模型扩展教育技术

基本信息

  • 批准号:
    RGPIN-2015-04985
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Personalized instruction is key for improving not only students' cognitive expertise related to the target domain (e.g., mathematics) but also their affect (e.g., interest about the domain) and meta-cognitive skills (domain independent abilities needed to learn effectively). Given that computers are becoming ubiquitous in today's classrooms, there is an opportunity to develop educational technologies that maximize student learning through personalized instruction adapted to a given student's unique needs. The prerequisite for realizing this adaptation is that technologies can recognize student states of interest (e.g., what students know about the target domain, how they feel during the learning process, and their learning strategies). This task is accomplished by the user model component. Traditionally, user models have focused on students' cognitive states. However, all three elements (Cognitive, Affective, Meta-cognitive, CAM) impact learning outcomes and so need to be taken into account during the modeling process. A key difficulty in doing so pertains to the fact that there is little if any direct information available to the model on higher level states associated with, for instance, affect or meta-cognition.****The long term goal of my research program is to design and evaluate user models for CAM states in a variety of educational contexts and applications. In the short term, my research agenda entails applying machine learning and expert centric approaches to construct models for CAM states based on data coming from two sources: (1) students' interaction with the target technology and (2) sensing devices (eye tracking, EEG). The models will be designed for four educational contexts that have the greatest potential to make an impact in terms of HQP training, research contributions, and practical implications, including analogical problem solving, collaborative activities, creativity in open-ended environments, and learning from teaching robotic agents. The outcomes will correspond to user models for each of these contexts that are capable of recognizing CAM states most relevant to the corresponding context, as well as general techniques for devising and evaluating models from interaction and sensor data.**
个性化教学不仅是提高学生与目标领域相关的认知专业知识的关键(例如,数学)而且它们的影响(例如,对领域的兴趣)和元认知技能(有效学习所需的领域独立能力)。鉴于计算机在当今的教室中变得无处不在,因此有机会开发教育技术,通过适应特定学生独特需求的个性化教学来最大限度地提高学生的学习。实现这种适应的先决条件是技术可以识别学生感兴趣的状态(例如,学生对目标领域的了解、学习过程中的感受以及学习策略)。此任务由用户模型组件完成。传统上,用户模型关注学生的认知状态。然而,所有三个要素(认知,情感,元认知,CAM)影响学习成果,因此需要在建模过程中考虑。这样做的一个关键困难在于,模型几乎没有任何关于与情感或元认知相关的更高层次状态的直接信息。我的研究计划的长期目标是在各种教育背景和应用程序中设计和评估CAM状态的用户模型。在短期内,我的研究议程需要应用机器学习和以专家为中心的方法,基于来自两个来源的数据构建CAM状态的模型:(1)学生与目标技术的交互和(2)传感设备(眼动跟踪,EEG)。这些模型将被设计用于四种教育背景,这些教育背景在HQP培训,研究贡献和实际影响方面具有最大的潜力,包括类比问题解决,协作活动,开放式环境中的创造力以及从教学机器人代理中学习。这些结果将对应于这些上下文中的每一个的用户模型,这些用户模型能够识别与相应上下文最相关的CAM状态,以及用于根据交互和传感器数据设计和评估模型的一般技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muldner, Kasia其他文献

An analysis of students' gaming behaviors in an intelligent tutoring system: predictors and impacts
Assistance that fades in improves learning better than assistance that fades out
  • DOI:
    10.1007/s11251-020-09520-7
  • 发表时间:
    2020-07-17
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jennings, Jay;Muldner, Kasia
  • 通讯作者:
    Muldner, Kasia
Investigating the Relationship between Neural Sensory Gateways and Creative Performance Using Convergent and Divergent Tasks
  • DOI:
    10.1080/10400419.2020.1717802
  • 发表时间:
    2020-02-10
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ahsan, Naba;Van Benthem, Kathleen;Muldner, Kasia
  • 通讯作者:
    Muldner, Kasia

Muldner, Kasia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muldner, Kasia', 18)}}的其他基金

Supporting Learning of Programming with Tutoring Systems
通过辅导系统支持编程学习
  • 批准号:
    RGPIN-2022-04876
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Extending educational technologies with user models of cognitive, affective and meta-cognitive student states
通过认知、情感和元认知学生状态的用户模型扩展教育技术
  • 批准号:
    RGPIN-2015-04985
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Extending educational technologies with user models of cognitive, affective and meta-cognitive student states
通过认知、情感和元认知学生状态的用户模型扩展教育技术
  • 批准号:
    RGPIN-2015-04985
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Extending educational technologies with user models of cognitive, affective and meta-cognitive student states
通过认知、情感和元认知学生状态的用户模型扩展教育技术
  • 批准号:
    RGPIN-2015-04985
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Extending educational technologies with user models of cognitive, affective and meta-cognitive student states
通过认知、情感和元认知学生状态的用户模型扩展教育技术
  • 批准号:
    RGPIN-2015-04985
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Extending educational technologies with user models of cognitive, affective and meta-cognitive student states
通过认知、情感和元认知学生状态的用户模型扩展教育技术
  • 批准号:
    RGPIN-2015-04985
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Extending educational technologies with user models of cognitive, affective and meta-cognitive student states
通过认知、情感和元认知学生状态的用户模型扩展教育技术
  • 批准号:
    RGPIN-2015-04985
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Workshop on Effective Practices to Support Open Educational Documents, Technologies, and Research
支持开放教育文档、技术和研究的有效实践研讨会
  • 批准号:
    2333297
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Dissemination Core
传播核心
  • 批准号:
    10714510
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
MRWeight: Medical Residents Learning Weight Management Counseling Skills -- A Multi-Modal, Technology-Assisted, Spaced Education Program
MRWeight:住院医生学习体重管理咨询技能——多模式、技术辅助、间隔教育计划
  • 批准号:
    10561356
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
  • 批准号:
    10790269
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Improving Vaccine Delivery in Hospitalized Children
改善住院儿童的疫苗接种
  • 批准号:
    10806029
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Northwestern University O'Brien Kidney National Resource Center
西北大学奥布莱恩肾脏国家资源中心
  • 批准号:
    10754080
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
South Carolina Clinical & Translational Research Institute (SCTR)
南卡罗来纳州临床
  • 批准号:
    10820346
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
2/2 Collaborative Union for Cancer Research, Education, and Disparities (CURED)
2/2 癌症研究、教育和差异合作联盟 (CURED)
  • 批准号:
    10762045
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Sensing Technologies for maternal depression treatment in low resource settings (StandStrong)
资源匮乏地区孕产妇抑郁症治疗的传感技术 (StandStrong)
  • 批准号:
    10857727
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了