Addressing Sparsity in Paratransit Demand and Cancellation Prediction: A Spatiotemporal Kernel Approach

解决辅助交通需求的稀疏性和取消预测:时空核方法

基本信息

  • 批准号:
    542546-2019
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

As an emerging mode of public transport, paratransit provides accessible and affordable mobility services to the elder and the disabled. Given the high operation cost of paratransit services, it is critical to have an accurate and reliable estimation of future demand and cancellations, which can be fed into advanced optimization applications, such as vehicle routing, crew scheduling, and fleet management, to name but a few. However, unlike mass transit services and popular on-demand mobility, the demand for paratransit service is essentially sparse over space and time. This sparsity nature (count data) limits the application of traditional time series-based models and emerging tensor learning and deep learning model, which often makes Gaussian assumptions. The other challenge is to make reliable estimation with different spatiotemporal scales/resolutions, from coarse regional level to fine postal code level, from daily level to minute by minute. To address these two challenges, in this Engage project we plan to develop a new spatiotemporal modeling framework that integrates the kernel approach with Gaussian process Poisson regression models to predict sparse demand accurately and reliably. To estimate the cancellation rate, we will develop a generalized classification model based on the detailed trip features (e.g., time of day, travel time, occupancy), individual feature (e.g., age, income), and other external features (e.g., weather condition).Our group (Smart Transportation Laboratory) at McGill University will work on the historical (two years) paratransit booking/cancellation data provided by GIRO and the new models will be integrated into the HASTUS-OnDemand software. Given that the spatiotemporal prediction models are ubiquitous, we expect the research outcomes to also benefit other products of GIRO, such as public transport demand prediction and postal demand prediction.
作为一种新兴的公共交通模式,辅助交通为老年人和残疾人提供无障碍和负担得起的移动服务。考虑到辅助运输服务的高运营成本,对未来需求和取消进行准确可靠的估计至关重要,这可以被馈送到高级优化应用中,例如车辆路线、机组人员调度和车队管理等。然而,与公共交通服务和流行的按需流动性不同,对辅助运输服务的需求在空间和时间上基本上是稀疏的。这种稀疏性(计数数据)限制了传统的基于时间序列的模型和新兴的张量学习和深度学习模型的应用,这些模型通常会做出高斯假设。另一个挑战是在不同的时空尺度/分辨率下进行可靠的估计,从粗略的区域级别到精细的邮政编码级别,从日常级别到每分钟。为了解决这两个挑战,在这个Engage项目中,我们计划开发一个新的时空建模框架,将内核方法与高斯过程泊松回归模型相结合,以准确可靠地预测稀疏需求。为了估计取消率,我们将根据详细的行程特征(例如,一天中的时间、旅行时间、占用),个体特征(例如,年龄、收入),以及其它外部特征(例如,我们麦吉尔大学的研究小组(智能交通实验室)将研究GIRO提供的历史(两年)辅助客运预订/取消数据,新模型将集成到HASTUS-OnDemand软件中。鉴于时空预测模型普遍存在,我们希望研究成果也有利于GIRO的其他产品,如公共交通需求预测和邮政需求预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun, Lijun其他文献

Construction of an Emotional Lexicon of Patients With Breast Cancer: Development and Sentiment Analysis.
  • DOI:
    10.2196/44897
  • 发表时间:
    2023-09-12
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Li, Chaixiu;Fu, Jiaqi;Lai, Jie;Sun, Lijun;Zhou, Chunlan;Li, Wenji;Jian, Biao;Deng, Shisi;Zhang, Yujie;Guo, Zihan;Liu, Yusheng;Zhou, Yanni;Xie, Shihui;Hou, Mingyue;Wang, Ru;Chen, Qinjie;Wu, Yanni
  • 通讯作者:
    Wu, Yanni
The galloyl moiety enhances the inhibitory activity of catechins and theaflavins against α-glucosidase by increasing the polyphenol-enzyme binding interactions
没食子酰基部分通过增加多酚-酶结合相互作用来增强儿茶素和茶黄素对 α-葡萄糖苷酶的抑制活性
  • DOI:
    10.1039/d0fo02689a
  • 发表时间:
    2021-01-07
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Sun, Lijun;Song, Yi;Liu, Xuebo
  • 通讯作者:
    Liu, Xuebo
Simultaneous separation and purification of chlorogenic acid, epicatechin, hyperoside and phlorizin from thinned young Qinguan apples by successive use of polyethylene and polyamide resins
  • DOI:
    10.1016/j.foodchem.2017.03.065
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Sun, Lijun;Liu, Dongjie;Guo, Yurong
  • 通讯作者:
    Guo, Yurong
Effects of zeolite on rheological properties of asphalt materials and asphalt-filler interaction ability
  • DOI:
    10.1016/j.conbuildmat.2023.131300
  • 发表时间:
    2023-04-10
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Liu, Ning;Liu, Liping;Sun, Lijun
  • 通讯作者:
    Sun, Lijun
Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model

Sun, Lijun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun, Lijun', 18)}}的其他基金

Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
  • 批准号:
    RGPIN-2019-05950
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing transit service by intelligent trip inference and recommendation system
智能出行推理和推荐系统提升公交服务
  • 批准号:
    567319-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
  • 批准号:
    RGPIN-2019-05950
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
  • 批准号:
    RGPIN-2019-05950
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
  • 批准号:
    DGECR-2019-00437
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
  • 批准号:
    RGPIN-2019-05950
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
  • 批准号:
    2312982
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310974
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
  • 批准号:
    2303626
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Topic-Oriented Public Sentiment Assessment via Social Media under Information Uncertainty and Sparsity
信息不确定性和稀疏性下社交媒体主题舆情评估
  • 批准号:
    23K16954
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
  • 批准号:
    2239376
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
CRII: CNS: Exploring Data and Model Sparsity in Deep Learning Systems using Graphs
CRII:CNS:使用图探索深度学习系统中的数据和模型稀疏性
  • 批准号:
    2245849
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
CMOS+X: Retinomorphic Infrared Imager with Sparsity-adaptive Machine-Learning Accelerator
CMOS X:具有稀疏自适应机器学习加速器的视网膜成像红外成像仪
  • 批准号:
    2318990
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310973
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
  • 批准号:
    23K18463
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
  • 批准号:
    2308152
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了