Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
基本信息
- 批准号:RGPIN-2019-05950
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With recent advances in information and communications technology, continuous streams of spatiotemporal mobility and traffic data are generated in cities through various sensing technologies, including loop detectors, cameras, RFID, cellphones, floating cars, and crowdsourcing platforms (e.g., Google Waze). The exponentially growing urban big data provides us with unprecedented opportunities to understand urban mobility and transportation systems in a data-driven way. Efficient and reliable modeling of these spatiotemporal data sets can benefit a wide range of intelligent transportation systems (ITS) and urban planning applications, such as travel demand prediction, trip planning, travel time estimation, route planning, ride sharing, transit service scheduling, signal control, and congestion/disruption management. The key to modeling spatiotemporal mobility/traffic data is to characterize the higher-order correlations/dependencies within the data. However, due to the large-scale, high-dimensional, incomplete, nonlinear, non-stationary and heterogeneous nature of emerging spatiotemporal mobility/traffic data, traditional models become insufficient to serve this role. The field is calling for new concepts and tools based on artificial intelligence and machine learning.
The long-term goal of this Discovery program is to establish novel statistical learning and innovative computational methods to learn from urban spatiotemporal big data and provide smart transportation applications for the operation and planning of future smart and resilient cities. More specifically, this program consists of four major research objectives for efficient and reliable spatiotemporal learning based on my recent progress on spatiotemporal data analytics: (1) develop advanced tensor learning and deep learning models for spatiotemporal mobility/traffic data, (2) develop scalable/efficient online learning models for large-scale and real-time problems, (3) develop new prediction schemes capturing long-range spatiotemporal dependencies, and (4) adapt the proposed learning frameworks for data heterogeneity and ensure model reliability.
This Discovery program will create state-of-the-art tools and knowledge to model high-dimensional spatiotemporal data sets generated from urban systems, and also provide decision-making tools and ITS applications for smart transportation of the future. In a board sense, the methodological pipeline developed through this program is not only transformative in transportation engineering but also valuable to other smart cities applications related to spatiotemporal modeling, such as weather, air quality and epidemic predictions. In addition, this program will promote fundamental interdisciplinary advances and train interdisciplinary HQP through integrating artificial intelligence knowledge with domain expertise in transportation engineering, contributing to the rapid development of artificial intelligence and smart cities in Canada.
随着信息和通信技术的最新进步,城市中通过各种传感技术(包括环路探测器、摄像头、RFID、手机、浮动汽车和众包平台(例如Google Waze))生成连续的时空流动性和交通数据流。呈指数级增长的城市大数据为我们提供了前所未有的机会,让我们以数据驱动的方式了解城市交通和交通系统。这些时空数据集的高效和可靠的建模可以为智能交通系统(ITS)和城市规划的广泛应用带来好处,如出行需求预测、出行规划、出行时间估计、路线规划、拼车、公交服务调度、信号控制和拥堵/中断管理。对时空机动性/交通数据进行建模的关键是表征数据中的高阶相关性/相关性。然而,由于新兴的时空移动/交通数据具有大规模、高维、不完全、非线性、非平稳和异构性的特点,传统的模型已经不能满足这一角色。该领域正在呼唤基于人工智能和机器学习的新概念和工具。
该发现计划的长期目标是建立新颖的统计学习和创新的计算方法,以学习城市时空大数据,并为未来智慧和弹性城市的运营和规划提供智慧交通应用。更具体地说,基于我在时空数据分析方面的最新进展,该计划包括四个主要研究目标:(1)开发用于时空移动/交通数据的高级张量学习和深度学习模型;(2)开发用于大规模和实时问题的可扩展/高效的在线学习模型;(3)开发新的捕获远程时空依赖关系的预测方案;(4)针对数据异构性和确保模型的可靠性,调整所提出的学习框架。
这一发现计划将创造最先进的工具和知识来对城市系统生成的高维时空数据集进行建模,并为未来的智能交通提供决策工具及其应用。通过该程序开发的方法论流水线不仅在交通工程中具有变革性,而且对其他与时空建模相关的智能城市应用,如天气、空气质量和疫情预测,也具有参考价值。此外,该项目将通过将人工智能知识与交通工程领域的专业知识相结合,推动跨学科的根本进步,培养跨学科的HQP,为加拿大人工智能和智慧城市的快速发展做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sun, Lijun其他文献
Construction of an Emotional Lexicon of Patients With Breast Cancer: Development and Sentiment Analysis.
- DOI:
10.2196/44897 - 发表时间:
2023-09-12 - 期刊:
- 影响因子:7.4
- 作者:
Li, Chaixiu;Fu, Jiaqi;Lai, Jie;Sun, Lijun;Zhou, Chunlan;Li, Wenji;Jian, Biao;Deng, Shisi;Zhang, Yujie;Guo, Zihan;Liu, Yusheng;Zhou, Yanni;Xie, Shihui;Hou, Mingyue;Wang, Ru;Chen, Qinjie;Wu, Yanni - 通讯作者:
Wu, Yanni
The galloyl moiety enhances the inhibitory activity of catechins and theaflavins against α-glucosidase by increasing the polyphenol-enzyme binding interactions
没食子酰基部分通过增加多酚-酶结合相互作用来增强儿茶素和茶黄素对 α-葡萄糖苷酶的抑制活性
- DOI:
10.1039/d0fo02689a - 发表时间:
2021-01-07 - 期刊:
- 影响因子:6.1
- 作者:
Sun, Lijun;Song, Yi;Liu, Xuebo - 通讯作者:
Liu, Xuebo
Simultaneous separation and purification of chlorogenic acid, epicatechin, hyperoside and phlorizin from thinned young Qinguan apples by successive use of polyethylene and polyamide resins
- DOI:
10.1016/j.foodchem.2017.03.065 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:8.8
- 作者:
Sun, Lijun;Liu, Dongjie;Guo, Yurong - 通讯作者:
Guo, Yurong
Effects of zeolite on rheological properties of asphalt materials and asphalt-filler interaction ability
- DOI:
10.1016/j.conbuildmat.2023.131300 - 发表时间:
2023-04-10 - 期刊:
- 影响因子:7.4
- 作者:
Liu, Ning;Liu, Liping;Sun, Lijun - 通讯作者:
Sun, Lijun
Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model
- DOI:
10.1155/2014/728107 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:0
- 作者:
Li, Li;Sun, Lijun;Ning, Guobao - 通讯作者:
Ning, Guobao
Sun, Lijun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sun, Lijun', 18)}}的其他基金
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
- 批准号:
RGPIN-2019-05950 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Enhancing transit service by intelligent trip inference and recommendation system
智能出行推理和推荐系统提升公交服务
- 批准号:
567319-2021 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
- 批准号:
RGPIN-2019-05950 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Addressing Sparsity in Paratransit Demand and Cancellation Prediction: A Spatiotemporal Kernel Approach
解决辅助交通需求的稀疏性和取消预测:时空核方法
- 批准号:
542546-2019 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
- 批准号:
DGECR-2019-00437 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Launch Supplement
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
- 批准号:
RGPIN-2019-05950 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Community-Soil-Air-Water: A Geoscience Learning Ecosystem for Urban Environments
REU 网站:社区-土壤-空气-水:城市环境的地球科学学习生态系统
- 批准号:
2348995 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CPS: Small: NSF-DST: Safety-Aware Behaviour-Driven Reinforcement Learning Based Autonomous Driving Solution for Urban Areas
CPS:小型:NSF-DST:基于安全意识行为驱动的强化学习的城市自动驾驶解决方案
- 批准号:
2343167 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Enhancing Climate Literacy in General Education Geoscience Courses through Individual Urban Heat Exposure Active Learning Projects
通过个人城市热暴露主动学习项目提高通识教育地球科学课程的气候素养
- 批准号:
2315364 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
AppalTRuST Project 2: Exposure to tobacco marketing for novel tobacco products and associations with future tobacco use in Appalachian young adults: tobacco regulatory science implications
AppalTrust 项目 2:接触新型烟草产品的烟草营销以及与阿巴拉契亚年轻人未来烟草使用的关联:烟草监管科学影响
- 批准号:
10665321 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
CBESS: a pipeline program to increase linguistic and geographic diversity in STEM + health
CBESS:一项旨在增加 STEM 健康领域语言和地理多样性的管道计划
- 批准号:
10665432 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Simulation Academy at Yale: Youth Entering Science (SAY-YES!)
耶鲁大学模拟学院:青年进入科学(说是!)
- 批准号:
10663646 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: