Multi-Sensor Deep Integration for Next Generation Land Vehicle Positioning and Navigation
多传感器深度集成下一代陆地车辆定位导航
基本信息
- 批准号:RGPIN-2015-06493
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Present land vehicle positioning and navigation (POS/NAV) systems provide drivers with route guidance information relying mostly on the Global Positioning System (GPS). They have become indispensable in many of the new automobile models, and their design concepts have evolved to include functionalities that make them more than just a vehicle location and map displaying system. Future land vehicle POS/NAV technology will integrate number of sensors and systems to increase the driving efficiency and enhance both driver's experience and safety. In addition, intelligent transportation systems (ITS) require a POS/NAV system that can provide sub-meter accuracy to enable efficient operation of newly emerging ITS technologies including cooperative vehicles for improved urban mobility and for cooperative collision avoidance.***GPS - based POS/NAV systems suffer from satellite signal blockage, interference and multipath usually experienced by land vehicles in urban canyons. Integration with vehicle motion sensors (speedometers, accelerometers and gyroscopes) enhances the performance for short period of time. However, the required level of accuracy for the above applications, which is sub-meter accuracy 95% of the time, has not been yet achieved. Land vehicles are now equipped with vision cameras, Radar and light detection and ranging (LiDAR) devices utilized for blind spot display and forward collision and lane departure warning systems. The availability of these technologies provides an attractive opportunity to further increase the POS/NAV system accuracy.***The ultimate goal of this research is the development of next generation integrated multi-sensor POS/NAV system capable of offering seamless positioning at sub-meter level of accuracy for land vehicles. This project will device a new POS/NAV paradigm that expands the capabilities of current GPS receiver technology for robust processing of GPS satellite signals in challenging urban canyons. It will also enable the integration of GPS with wider range of sensors and systems of complimentary characteristics on a single platform. The core development will be based on a reconfigurable GPS software receiver that will be developed in this research to enable access to the low-level signal observables inside the GPS receiver. ***A POS/NAV system with continuous sub-meter accuracy shall have a significant impact in wide range of applications. For instance, car industry will benefit from a POS/NAV system that increases driving efficiency and enhances driver's experience and safety. The proposed POS/NAV technology shall maintain reliable and robust performance for different ITS applications and services. It will enable efficient interaction between the vehicle drivers, the ITS and the road network infrastructure. Unmanned vehicles widely used in national defence and mining industry will also benefit from the proposed technology.**
目前的陆地车辆定位导航系统主要依靠全球定位系统(GPS)为驾驶员提供路线引导信息。它们已经成为许多新车型中不可或缺的一部分,它们的设计概念已经发展到包括功能,使它们不仅仅是一个车辆定位和地图显示系统。未来的陆地车辆POS/NAV技术将集成大量传感器和系统,以提高驾驶效率,增强驾驶员的体验和安全性。此外,智能交通系统(ITS)需要一个能够提供亚米精度的POS/NAV系统,以实现新兴ITS技术的有效运行,包括改善城市机动性和合作避免碰撞的合作车辆。***基于GPS的POS/NAV系统受到卫星信号阻塞、干扰和多路径的影响,这通常是陆地车辆在城市峡谷中遇到的。与车辆运动传感器(速度计,加速度计和陀螺仪)的集成提高了短时间内的性能。然而,上述应用所需的精度水平,即95%的时间是亚米精度,尚未实现。陆地车辆现在配备了视觉摄像头、雷达和光探测和测距(LiDAR)设备,用于盲点显示、前方碰撞和车道偏离警告系统。这些技术的可用性为进一步提高POS/NAV系统的精度提供了一个有吸引力的机会。***本研究的最终目标是开发下一代集成多传感器POS/NAV系统,能够为陆地车辆提供亚米级精度的无缝定位。该项目将采用一种新的POS/NAV模式,扩展当前GPS接收器技术的能力,在具有挑战性的城市峡谷中对GPS卫星信号进行稳健处理。它还将使GPS与更大范围的传感器和互补特性系统集成在一个平台上。核心开发将基于可重构GPS软件接收器,该接收器将在本研究中开发,以访问GPS接收器内部的低电平信号可观测值。***具有连续亚米精度的POS/NAV系统将在广泛的应用中产生重大影响。例如,汽车行业将受益于POS/NAV系统,它可以提高驾驶效率,增强驾驶员的体验和安全性。建议的POS/NAV技术应在不同的ITS应用和服务中保持可靠和稳健的性能。它将实现车辆驾驶员、智能交通系统和道路网络基础设施之间的有效互动。广泛用于国防和采矿业的无人驾驶车辆也将受益于拟议的技术
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noureldin, Aboelmagd其他文献
Implementation methodology of embedded land vehicle positioning using an integrated GPS and multi sensor system
- DOI:
10.3233/ica-2010-0330 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:6.5
- 作者:
Islam, Azizul;Iqbal, Umar;Noureldin, Aboelmagd - 通讯作者:
Noureldin, Aboelmagd
Adaptive fuzzy prediction of low-cost inertial-based positioning errors
- DOI:
10.1109/tfuzz.2006.889936 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:11.9
- 作者:
Abdel-Hamid, Walid;Noureldin, Aboelmagd;El-Sheimy, Naser - 通讯作者:
El-Sheimy, Naser
Magnetometer Calibration for Portable Navigation Devices in Vehicles Using a Fast and Autonomous Technique
- DOI:
10.1109/tits.2014.2313764 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:8.5
- 作者:
Wahdan, Ahmed;Georgy, Jacques;Noureldin, Aboelmagd - 通讯作者:
Noureldin, Aboelmagd
Direction of Arrival Estimation of GPS Narrowband Jammers Using High-Resolution Techniques
- DOI:
10.3390/s19245532 - 发表时间:
2019-12-02 - 期刊:
- 影响因子:3.9
- 作者:
Moussa, Mohamed;Osman, Abdalla;Noureldin, Aboelmagd - 通讯作者:
Noureldin, Aboelmagd
Optimizing neuro-fuzzy modules for data fusion of vehicular navigation systems using temporal cross-validation
- DOI:
10.1016/j.engappai.2006.03.002 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:8
- 作者:
Noureldin, Aboelmagd;El-Shafie, Ahmed;Taha, Mahmould Reda - 通讯作者:
Taha, Mahmould Reda
Noureldin, Aboelmagd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noureldin, Aboelmagd', 18)}}的其他基金
Multi-Sensor Precise Positioning for Autonomous and Connected Vehicles
自动驾驶和联网车辆的多传感器精确定位
- 批准号:
RGPIN-2020-03900 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning-based Multi-Sensor Positioning and Mapping for Autonomous Vehicles
基于机器学习的自动驾驶汽车多传感器定位和建图
- 批准号:
560898-2020 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Multi-Sensor Precise Positioning for Autonomous and Connected Vehicles
自动驾驶和联网车辆的多传感器精确定位
- 批准号:
RGPIN-2020-03900 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Multi-Sensor Precise Positioning for Autonomous and Connected Vehicles
自动驾驶和联网车辆的多传感器精确定位
- 批准号:
RGPIN-2020-03900 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Multi-Sensor Deep Integration for Next Generation Land Vehicle Positioning and Navigation
多传感器深度集成下一代陆地车辆定位导航
- 批准号:
RGPIN-2015-06493 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Multi-Sensor Deep Integration for Next Generation Land Vehicle Positioning and Navigation
多传感器深度集成下一代陆地车辆定位导航
- 批准号:
RGPIN-2015-06493 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Multi-Sensor Deep Integration for Next Generation Land Vehicle Positioning and Navigation
多传感器深度集成下一代陆地车辆定位导航
- 批准号:
RGPIN-2015-06493 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Multi-Sensor Deep Integration for Next Generation Land Vehicle Positioning and Navigation
多传感器深度集成下一代陆地车辆定位导航
- 批准号:
RGPIN-2015-06493 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Smart Navigation Technology – From Systems to Smart Agents
下一代智能导航技术 — 从系统到智能代理
- 批准号:
RGPIN-2014-03595 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced low cost embedded positioning and navigation systems for several applications
为多种应用开发先进的低成本嵌入式定位和导航系统
- 批准号:
283158-2009 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
人类NADPH sensor蛋白HSCARG调控机制研究
- 批准号:30930020
- 批准年份:2009
- 资助金额:170.0 万元
- 项目类别:重点项目
基于sensor agent的营养液组分动态测量与建模研究
- 批准号:60775014
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Development of next generation ISFET pH sensor to identify upwelling area of deep ocean circulation
开发下一代 ISFET pH 传感器来识别深海环流的上升流区域
- 批准号:
23K17464 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
SERG ONE DBS – an intelligent mechanomyography sensor platform for precise, deep brain stimulation parametrisation to treat Parkinson’s Disease
SERG ONE DBS — 一种智能肌力图传感器平台,用于精确、深部脑刺激参数化以治疗帕金森病
- 批准号:
10069052 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
CCSS: Reference-free and Spatial-aware Deep Sensor Array Decoding towards High-fidelity Remote Health Monitoring
CCSS:无参考和空间感知深度传感器阵列解码,实现高保真远程健康监测
- 批准号:
2317148 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
- 批准号:
2149551 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Embedded sensor fusion deep network for road user detection
用于道路用户检测的嵌入式传感器融合深度网络
- 批准号:
570655-2021 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Real-time Aberration Sensor for Large-Scale Microscopy Deep in the Mouse and Adult Zebrafish Brain
用于小鼠和成年斑马鱼大脑深处的大规模显微镜检查的实时像差传感器
- 批准号:
10166305 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Multidimensional analysis using sensor arrays and deep learning for high-precision diagnostics
使用传感器阵列和深度学习进行多维分析以实现高精度诊断
- 批准号:
563228-2021 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
University Undergraduate Student Research Awards
Personalized Deep Learning Models of Rapid Changes in Major Depressive Disorder Symptoms using Passive Sensor Data from Smartphones and Wearable Devices
使用来自智能手机和可穿戴设备的被动传感器数据建立重度抑郁症症状快速变化的个性化深度学习模型
- 批准号:
10229551 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Personalized Deep Learning Models of Rapid Changes in Major Depressive Disorder Symptoms using Passive Sensor Data from Smartphones and Wearable Devices
使用来自智能手机和可穿戴设备的被动传感器数据建立重度抑郁症症状快速变化的个性化深度学习模型
- 批准号:
10029386 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Personalized Deep Learning Models of Rapid Changes in Major Depressive Disorder Symptoms using Passive Sensor Data from Smartphones and Wearable Devices
使用来自智能手机和可穿戴设备的被动传感器数据建立重度抑郁症症状快速变化的个性化深度学习模型
- 批准号:
10412027 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别: