Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor

基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析

基本信息

  • 批准号:
    2149551
  • 负责人:
  • 金额:
    $ 39.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensorAbstract: COVID-19, caused by the virus SARS-CoV-2, was declared a pandemic by the World Health Organization (WHO) on March 12, 2020. Diagnostic testing has been a critical focus of the response, with an urgent need to rapidly develop, scale, and distribute new tests. Despite all the successful testing methods developed for the direct detection of SARS-CoV-2 genetic material, there is still an urgent need to create new serological assays that can detect virus-specific antibodies as they can ascertain complementary information to direct detection methods by indicating previous exposure and potential immunity, especially important due to various emerging variants. In addition, as vaccines against new variants roll out, these serological tests can be used to evaluate the efficacy of vaccination campaigns, including the ability to elicit SARS-CoV-2 and variant antigen-specific antibodies across vaccinated and unvaccinated populations. In contrast to the current direct detection methods, serology tests that detect antibodies can be low-cost and conducive to a point-of-care (POC) setting, enabling broad screening efforts like widespread immunity testing to indicate individuals in need of vaccine boosters, qualify individuals for travel, return to work, and/or identify convalescent plasma donors. To serve this urgent need, this project will create a smartphone-based, cost-effective platform that can sense and measure the many different antibodies specific to SARS-CoV-2 a person may develop, in a testing format that is easy to use and can be completed within 15 min using an inexpensive paper-based test. The team of researchers will develop a multiplexed POC immunoassay and serodiagnostic algorithm that will infer the vaccination/immunity status from up to 10 unique immunoreactions to distinguish an array of SARS-CoV-2 antibodies. For this, the research team will create a multiplexed vertical flow assay (xVFA) to simultaneously detect IgA, IgM, and IgG antibodies to the S protein (as well as variants of the S protein, such as delta, lambda, and other emerging variants), with separate immunoreaction sites dedicated to S-1, S-2, and the receptor-binding domain (RBD) of the S-protein in the SARS-CoV-2 virus and its most recent variants. Using existing and de-identified human serum samples, with the xVFA platform, the research team will screen COVID-19-positive samples, including those resulting from common variants (confirmed through reverse transcriptase-Polymerase Chain Reaction and sequencing) along with vaccinated samples and pre-pandemic un-vaccinated negative control samples. A neural network will then be trained using quantitative information from the multiplexed immunoreactions and the ground-truth clinical state over a set of remnant human serum samples. This training phase will (1) create a serodiagnostic algorithm to identify a positive immune response to SARS-CoV-2 infection (including common variants) or vaccination status using the multiplexed antibody measurements, and (2) identify the key subset of antibody-antigen interactions that most accurately represent and quantify an immune response to SARS-CoV-2 infection or protection via vaccination. A blinded testing phase will benchmark the performance enhancement of the multiplexed and data-driven approach to rigorously validate the trained inference network's generalization. By validating a new multiplexed vertical flow assay and serodiagnosis algorithm for COVID-19 immune protection, the research team aims to determine the significant improvements in sensitivity and specificity gained through the multiple measurements and computational analysis, which come with little added cost or operational steps, or required sample volume. This project will also establish a complementary educational outreach program that will involve (1) public interviews and popular science articles in news media and the internet; (2) undergraduate research opportunities involving underrepresented students; and (3) graduate student training through the organization of workshops, seminars and conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于深度学习的血清学检测用于使用基于纸的多路复用传感器的COVID-19免疫的床旁分析摘要:2020年3月12日,由SARS-CoV-2病毒引起的COVID-19被世界卫生组织(WHO)宣布为大流行病。诊断测试一直是应对措施的一个关键重点,迫切需要快速开发、扩展和分发新的测试。尽管所有成功的测试方法开发的SARS-CoV-2遗传物质的直接检测,仍然迫切需要创建新的血清学检测,可以检测病毒特异性抗体,因为它们可以确定补充信息,直接检测方法,通过指示以前的暴露和潜在的免疫力,特别是重要的,由于各种新出现的变种。此外,随着针对新变种的疫苗的推出,这些血清学测试可用于评估疫苗接种活动的有效性,包括在接种和未接种人群中引发SARS-CoV-2和变异抗原特异性抗体的能力。与目前的直接检测方法相比,检测抗体的血清学测试可以是低成本的,并且有助于护理点(POC)设置,使得能够进行广泛的筛查工作,如广泛的免疫测试,以指示需要疫苗加强剂的个体,使个体有资格旅行,返回工作岗位,和/或识别恢复期血浆供体。为了满足这一迫切需求,该项目将创建一个基于智能手机的、具有成本效益的平台,该平台可以检测和测量一个人可能产生的多种不同的SARS-CoV-2特异性抗体,其测试格式易于使用,并且可以在15分钟内使用廉价的纸质测试完成。研究小组将开发一种多重POC免疫测定和血清学诊断算法,该算法将从多达10种独特的免疫反应中推断疫苗接种/免疫状态,以区分SARS-CoV-2抗体阵列。为此,研究团队将创建一种多重垂直流检测(xVFA),以同时检测S蛋白的伊加、IgM和IgG抗体(以及S蛋白的变体,如δ、λ和其他新出现的变体),具有专用于S-1,S-2,以及SARS-CoV-2病毒及其最新变体中S蛋白的受体结合域(RBD)。利用现有的和去识别的人类血清样本,通过xVFA平台,研究团队将筛查COVID-19阳性样本,包括由常见变体产生的样本(通过逆转录-聚合酶链反应和测序确认)沿着接种疫苗的样本和大流行前未接种疫苗的阴性对照样本。然后将使用来自一组残留人血清样本的多重免疫反应和真实临床状态的定量信息来训练神经网络。该训练阶段将(1)创建血清学诊断算法,以使用多重抗体测量来鉴定对SARS-CoV-2感染(包括常见变体)或疫苗接种状态的阳性免疫应答,以及(2)鉴定抗体-抗原相互作用的关键子集,其最准确地代表和量化对SARS-CoV-2感染或通过疫苗接种保护的免疫应答。盲测试阶段将对多路复用和数据驱动方法的性能增强进行基准测试,以严格验证经过训练的推理网络的泛化能力。通过验证用于COVID-19免疫保护的新型多重垂直流检测和血清诊断算法,研究团队旨在确定通过多次测量和计算分析获得的灵敏度和特异性的显着改善,这几乎没有增加成本或操作步骤,或所需的样本量。该项目还将建立一个补充性的教育推广计划,其中包括:(1)新闻媒体和互联网上的公开采访和科普文章;(2)涉及代表性不足的学生的本科生研究机会;以及(3)通过组织讲习班培训研究生,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aydogan Ozcan其他文献

Deep Learning-designed Diffractive Materials for Optical Computing and Computational Imaging
用于光学计算和计算成像的深度学习设计的衍射材料
All-optical object classification through unknown phase diffusers using a single-pixel diffractive machine vision system
使用单像素衍射机器视觉系统通过未知相位漫射器进行全光学物体分类
Volumetric fluorescence microscopy using convolutional recurrent neural networks
使用卷积循环神经网络的体积荧光显微镜
Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
使用深度学习和金字塔采样对乳腺癌图像进行自动 HER2 评分
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Şahan Yoruç Selçuk;Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;Musa Aydin;Aras Firat Unal;Aditya Gomatam;Zhen Guo;Morgan Angus Darrow;Goren Kolodney;Karine Atlan;T. Haran;N. Pillar;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan
Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array
通过等离子体光电导焦平面阵列进行超分辨率太赫兹成像
  • DOI:
    10.1364/cleo_si.2023.sm1n.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi
  • 通讯作者:
    M. Jarrahi

Aydogan Ozcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aydogan Ozcan', 18)}}的其他基金

PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
  • 批准号:
    2345816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Continuing Grant
Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
  • 批准号:
    2141157
  • 财政年份:
    2022
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
  • 批准号:
    2055749
  • 财政年份:
    2021
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning
EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成​​进行高通量早期检测和分析
  • 批准号:
    2034234
  • 财政年份:
    2020
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
  • 批准号:
    2054102
  • 财政年份:
    2020
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
  • 批准号:
    1926371
  • 财政年份:
    2019
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
  • 批准号:
    1533983
  • 财政年份:
    2015
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
  • 批准号:
    1444240
  • 财政年份:
    2014
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
  • 批准号:
    1332275
  • 财政年份:
    2013
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
  • 批准号:
    0954482
  • 财政年份:
    2010
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
  • 批准号:
    EP/Y028252/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Fellowship
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
  • 批准号:
    2309810
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Continuing Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
  • 批准号:
    23K11102
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
  • 批准号:
    23K04201
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
  • 批准号:
    23K16920
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
  • 批准号:
    23K14406
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
  • 批准号:
    EP/X036960/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Research Grant
Linking endotype and phenotype to understand COPD heterogeneity via deep learning and network science
通过深度学习和网络科学将内型和表型联系起来以了解 COPD 异质性
  • 批准号:
    10569732
  • 财政年份:
    2023
  • 资助金额:
    $ 39.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了