ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES

阐明通过纳米孔进行生物分子运输的基础知识

基本信息

  • 批准号:
    RGPIN-2016-05041
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Dynamic phenomena in confined geometries, including the transport of charged biopolymers through nanoscale pores, are fundamental processes of life. Biological examples of molecular translocation through nanopores include the passage of mRNA through the nuclear pore complex; the secretion of proteins across cell membranes; and the injection of DNA from viruses. In vivo, such transport is actively controlled by interactions with cellular membranes and/or specific proteins. Elucidating the physical processes that govern nanopore transport phenomena is a fertile field of research, and strategies for controlling passage will find numerous technological applications. ******The last decade has seen significant advancements in nanofluidic devices to develop biomimetic systems and to study transport processes at the single-molecule level. In particular, exciting results have been obtained through the study of passage of nucleic acids through solid-state nanopores (ssNP). ssNP are nanometer-sized holes in thin dielectric membranes, which have emerged as a versatile tool to investigate a wide range of phenomena involving DNA and proteins. The basic concept relies on monitoring ionic current changes to provide physical and chemical information about the translocating molecule. In addition to DNA sequencing, this concept exhibits great promise for other applications, including molecular counting; scanning of local structures along DNA molecules, or the investigation of single biomolecular interactions. However, the limited spatiotemporal resolution and/or capture efficiency of current ssNP devices hinder these implementation for real-world applications. Innovative solutions to overcome these limitations will emerge from a deeper understanding of the dynamics of translocation of polymers through ssNP. To this end, this research program will be focused on the long-term objective of experimentally elucidating the physical processes governing biomolecular transport phenomena through nanopores. The goal will be to develop novel strategies or devices for gaining control over capture rate and manipulating molecular motion during passage and, ultimately, to translate these discoveries into new tools to characterize single-molecule processes and to study fundamental processes of life. ******The new knowledge generated over the course of this 5-year program could potentially secure a global competitive edge for Canada biomedical industry in the development of solid-state nanopore technologies. In addition, this program will offer valuable multidisciplinary training to highly qualified personnel (HQP) in a range of cutting-edge single-molecule techniques. These skills would position HQP to meet the demands of our growing high-tech industry, thereby strengthening Canada's knowledge-based economy and ensuring maximum return from its research investments.**
受限几何结构中的动态现象,包括带电生物聚合物通过纳米级孔的运输,是生命的基本过程。通过纳米孔的分子易位的生物学实例包括mRNA通过核孔复合物;蛋白质跨细胞膜的分泌;以及来自病毒的DNA的注射。在体内,这种转运通过与细胞膜和/或特定蛋白质的相互作用来主动控制。阐明控制纳米孔传输现象的物理过程是一个肥沃的研究领域,控制通道的策略将找到许多技术应用。** 在过去的十年中,纳米流体设备在开发仿生系统和研究单分子水平的运输过程方面取得了重大进展。特别是,通过研究核酸通过固态纳米孔(ssNP)已经获得了令人兴奋的结果。ssNP是薄介电膜中的纳米尺寸的孔,其已成为研究涉及DNA和蛋白质的广泛现象的通用工具。基本概念依赖于监测离子电流的变化,以提供有关易位分子的物理和化学信息。除了DNA测序之外,这一概念在其他应用方面也有很大的潜力,包括分子计数、沿着DNA分子扫描局部结构或研究单个生物分子的相互作用。然而,当前ssNP设备的有限的时空分辨率和/或捕获效率阻碍了这些用于现实世界应用的实现。创新的解决方案,以克服这些限制,将出现从更深入地了解的动态易位的聚合物通过ssNP。为此,该研究计划将专注于实验阐明通过纳米孔控制生物分子运输现象的物理过程的长期目标。目标是开发新的策略或设备,用于控制捕获率和操纵分子运动,并最终将这些发现转化为新的工具来表征单分子过程和研究生命的基本过程。** 在这个为期5年的计划过程中产生的新知识可能会确保加拿大生物医学行业在固态纳米孔技术开发方面的全球竞争优势。此外,该计划将为高素质人员(HQP)提供一系列尖端单分子技术的宝贵多学科培训。这些技能将使HQP能够满足我们不断增长的高科技产业的需求,从而加强加拿大的知识经济,并确保其研究投资的最大回报。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TabardCossa, Vincent其他文献

TabardCossa, Vincent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TabardCossa, Vincent', 18)}}的其他基金

Elucidating and Manipulating Polymer Transport through Nanopores
阐明和操纵聚合物通过纳米孔的运输
  • 批准号:
    RGPIN-2021-04304
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Elucidating and Manipulating Polymer Transport through Nanopores
阐明和操纵聚合物通过纳米孔的运输
  • 批准号:
    RGPIN-2021-04304
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Digital Quantification of SARS-CoV-2 viral RNA with Solid-State Nanopores for Rapid Detection of COVID-19
使用固态纳米孔对 SARS-CoV-2 病毒 RNA 进行实时数字定量,以快速检测 COVID-19
  • 批准号:
    555057-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Alliance Grants
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
  • 批准号:
    EP/X015351/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception
职业:探索自适应、协作和智能雷达传感和感知的基础知识
  • 批准号:
    2340029
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
CAREER: Fundamentals and Applications of Electrochemically Active Nanofluids for Energy Storage and Conversion
职业:用于能量存储和转换的电化学活性纳米流体的基础和应用
  • 批准号:
    2338147
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
  • 批准号:
    EP/X015327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
  • 批准号:
    EP/X015335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
CAREER: Fundamentals of Conformational and Surface Water Dynamics in Supramolecular Nanofibers
职业:超分子纳米纤维的构象和表面水动力学基础
  • 批准号:
    2331196
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Fundamentals of Heterogeneous Nucleation with Application to the Optimization of Horizontal Ribbon Growth
异质成核的基础及其在水平带生长优化中的应用
  • 批准号:
    2317674
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Fundamentals and applications of tropical schemes
热带计划的基础和应用
  • 批准号:
    EP/X02752X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了