Elucidating and Manipulating Polymer Transport through Nanopores

阐明和操纵聚合物通过纳米孔的运输

基本信息

  • 批准号:
    RGPIN-2021-04304
  • 负责人:
  • 金额:
    $ 4.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Nanopores are molecular-sized holes in thin membranes that have the ability to detect individual molecules. In operation, one of these thin membranes separates two reservoirs containing salt water, and the pore is the only path from one reservoir to the other. When a voltage is applied across the membrane it drives the salt ions through the pore, which we read as a current. If a charged molecule is in the reservoir, it too can be pulled through the pore and in so doing, it blocks the ions which we see as a corresponding drop in current. From this drop in current we can obtain information about the identity (size, shape, charge) of these charged molecules. This purely electrical approach for single molecule detection exhibits great promise for a number of practical applications. Nanopores are poised to revolutionize many fields. Already, organic pores are being used in a commercial device capable of sequencing DNA and solid-state pores have demonstrated their versatility in several proof-of-concept articles with implications for next-gen diagnostics. Beyond the medical field, we expect that nanopores also represent a paradigm shift in digital information storage. By using DNA-like polymers to store information and using nanopores to read off the digital signals, large data warehouses could dramatically reduce their carbon footprint. These types of technologies are ideally suited for nanopores, and consequently nanopores are taking center stage as a versatile tool for new bio-nanotechnologies. However, fundamental questions and challenges remain before solid-state nanopores can deliver on their promise. Before these disruptive technologies can be realized, the field requires a deeper understanding of how molecules are captured and transported through nanopores. This will allow us to more precisely manipulate molecules and extract greater meaning from their current signatures. To this end, my research program is focused on the long-term objective of experimentally elucidating the effects of external driving fields, polymer dynamics, molecule-pore interactions, and the impact of pore structure on nanopore transport characteristics, so we can apply this knowledge to the development of new tools and methods. The new knowledge generated over the course of this 5-year program could potentially secure a global competitive edge for Canada's high-tech industries in the development of numerous solid-state nanopore applications in the Life Sciences, Medicine, and Digital Data Storage fields. In addition, this program will offer valuable multidisciplinary training to highly qualified personnel (HQP) in a range of cutting-edge single-molecule and nanoscience techniques. These skills would position HQP to meet the demands of our growing high-tech industry, thereby strengthening Canada's knowledge-based economy and ensuring maximum return from its research investments.
纳米孔是薄膜上分子大小的孔,具有检测单个分子的能力。在操作中,其中一个薄膜将两个含盐水的储水池隔开,而这个孔是从一个储水池到另一个储水池的唯一路径。当在膜上施加电压时,它会驱动盐离子通过孔洞,我们将其读作电流。如果一个带电的分子在储存库中,它也可以被拉过孔洞,在这样做的过程中,它阻止了我们所看到的相应的电流下降的离子。从电流的下降中,我们可以获得有关这些带电分子的身份(大小、形状、电荷)的信息。这种用于单分子检测的纯电子方法在许多实际应用中显示出巨大的前景。纳米孔有望给许多领域带来革命性的变化。有机毛孔已经被用于能够对DNA进行测序的商业设备中,固态毛孔已经在几篇概念验证文章中展示了它们的多功能性,这对下一代诊断有意义。除了医学领域,我们预计纳米孔也代表着数字信息存储的范式转变。通过使用类DNA聚合物来存储信息,并使用纳米孔来读取数字信号,大型数据仓库可以显著减少它们的碳足迹。这些类型的技术非常适合纳米孔,因此纳米孔作为新的生物纳米技术的多功能工具占据了中心舞台。然而,在固态纳米孔能够兑现其承诺之前,根本的问题和挑战仍然存在。在实现这些颠覆性技术之前,该领域需要更深入地了解分子是如何被捕获并通过纳米孔运输的。这将使我们能够更精确地操纵分子,并从它们目前的签名中提取更大的意义。为此,我的研究计划专注于通过实验阐明外部驱动场、聚合物动力学、分子-孔相互作用以及孔结构对纳米孔传输特性的影响的长期目标,以便我们可以将这些知识应用于新工具和方法的开发。在这项为期5年的计划过程中产生的新知识可能会确保加拿大高科技行业在生命科学、医学和数字数据存储领域的众多固态纳米孔应用开发方面获得全球竞争优势。此外,该项目还将在一系列尖端单分子和纳米科学技术方面为高素质人才(HQP)提供有价值的多学科培训。这些技能将使HQP能够满足我们不断增长的高科技行业的需求,从而加强加拿大以知识为基础的经济,并确保其研究投资获得最大回报。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TabardCossa, Vincent其他文献

TabardCossa, Vincent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TabardCossa, Vincent', 18)}}的其他基金

Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Collaborative Research and Development Grants
Elucidating and Manipulating Polymer Transport through Nanopores
阐明和操纵聚合物通过纳米孔的运输
  • 批准号:
    RGPIN-2021-04304
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Collaborative Research and Development Grants
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Digital Quantification of SARS-CoV-2 viral RNA with Solid-State Nanopores for Rapid Detection of COVID-19
使用固态纳米孔对 SARS-CoV-2 病毒 RNA 进行实时数字定量,以快速检测 COVID-19
  • 批准号:
    555057-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Alliance Grants
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Collaborative Research and Development Grants
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid nanopore-based single molecule counting for accurate concentration measurements
基于纳米孔的快速单分子计数可实现精确的浓度测量
  • 批准号:
    530554-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Collaborative Research and Development Grants
ELUCIDATING the FUNDAMENTALS of BIOMOLECULAR TRANSPORT through NANOPORES
阐明通过纳米孔进行生物分子运输的基础知识
  • 批准号:
    RGPIN-2016-05041
  • 财政年份:
    2017
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Continuing Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Research Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
Characterising and Manipulating Triplet Interactions
表征和操纵三重态相互作用
  • 批准号:
    FT230100002
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    ARC Future Fellowships
Understanding and manipulating how Trypanosoma cruzi infects its triatomine insect hosts
了解和操纵克氏锥虫如何感染其锥蝽昆虫宿主
  • 批准号:
    BB/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Research Grant
Manipulating sex determination pathways for pest control
操纵性别决定途径以控制害虫
  • 批准号:
    2869559
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Studentship
Manipulating normal estrogen physiology as a therapeutic approach in cancer
操纵正常雌激素生理学作为癌症的治疗方法
  • 批准号:
    10561945
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
  • 批准号:
    10627404
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了