Rethinking the fundamentals of photonic signal processing for "green" communications and computing

重新思考“绿色”通信和计算的光子信号处理的基础知识

基本信息

  • 批准号:
    RGPIN-2014-04561
  • 负责人:
  • 金额:
    $ 5.9万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The implementation of photonic circuits for temporal signal generation, processing, and detection in information and communications technology (ICT) systems is generally envisioned as an extremely promising approach to overcome the speed limitations of present electronics-based solutions. The bandwidth advantage of photonics is especially attractive to cope with the ever-increasing demand for "higher capacity at a lower cost" in high-speed telecommunications, information processing and computing platforms. However, photonic solutions still suffer from two main limitations, namely 1) they are typically bulky and 2) they are "power hungry", preventing the practical use and spread of photonic signal-processing technologies beyond a few niche applications. Significant progress has been made concerning size reduction of photonic structures, through successful device implementations in compact fiber-optics technologies, e.g. fiber Bragg gratings, or in integrated-waveguide configurations, most prominently CMOS-compatible photonic chips. Such footprint improvements in turn have had a positive impact on the energy performance of photonic signal-processing technologies. In spite of this progress, present photonic signal-processing designs intrinsically use much higher amounts of energy than competing technologies (e.g. electronics), and very little effort has been devoted so far to improving their performance in terms of energy efficiency. **The research program described in this proposal will focus on the design and realization of photonic signal-processing devices for efficient generation, manipulation, and detection of ultrafast data and control signals, of fundamental importance for broadband telecommunications, and high-speed information processing and computing. The distinctive focus of the program will be on defining innovative, general strategies for optimizing the energy efficiency of the target photonic circuits without trading their processing speed advantage. Particularly, we will pursue the realization of the target circuits in fiber-optics and/or integrated waveguide (silicon photonics) technologies, with an emphasis on fiber/integrated grating structures. The novel design strategies to be investigated will be capable of providing dramatic (orders-of-magnitude) improvements on energy performance over present technologies at processing speeds well beyond the reach of electronics, above the THz range. Sub-systems to be pursued in the mid to long-term will include `on chip' reconfigurable circuits for optical linear filtering, arbitrary optical waveform generation and detection, and ultrafast analog and digital computing. In the short-term, activities at the core of the program will be conducted around four inter-related research projects, involving the development of (a) energy-optimized analog optical signal processors, (b) "green" noiseless waveform amplification methods, (c) "zero-energy" ultrafast optical logical gates, and (d) energy-optimized circuits for ultrafast clock recovery, generation and processing. **The outcome of this research could open the path to the use of photonic signal-processing solutions at a much larger scale, directly contributing to overcome present electronic bottlenecks in almost any application or sector relying in ICT infrastructure. The new knowledge generated from this program and the training of highly qualified personnel (HQP) in the targeted strategic areas will contribute to enhance Canada's global competitiveness across a very wide range of high-technology sectors.
在信息和通信技术(ICT)系统中实现用于时间信号生成、处理和检测的光子电路通常被设想为克服当前基于电子的解决方案的速度限制的非常有前途的方法。光子学的带宽优势对于科普高速电信、信息处理和计算平台中“以较低成本获得更高容量”的日益增长的需求特别有吸引力。然而,光子解决方案仍然受到两个主要限制,即1)它们通常体积庞大,以及2)它们是“耗电的”,从而阻止光子信号处理技术的实际使用和传播超出一些利基应用。通过在紧凑型光纤技术(例如光纤布拉格光栅)或集成波导配置(最突出的是CMOS兼容的光子芯片)中的成功器件实现,关于光子结构的尺寸减小已经取得了重大进展。这种占地面积的改善反过来又对光子信号处理技术的能量性能产生了积极的影响。尽管取得了这些进展,但目前的光子信号处理设计本质上比竞争技术(例如电子学)使用更高的能量,并且迄今为止很少有人致力于提高它们在能量效率方面的性能。** 本提案中描述的研究计划将侧重于光子信号处理设备的设计和实现,用于高效生成,操纵和检测超快数据和控制信号,这对宽带电信以及高速信息处理和计算至关重要。该计划的独特重点将是定义创新的通用策略,以优化目标光子电路的能源效率,而不会牺牲其处理速度优势。特别是,我们将追求在光纤和/或集成波导(硅光子学)技术的目标电路的实现,重点是光纤/集成光栅结构。要研究的新设计策略将能够提供显着的(数量级)改进能源性能超过目前的技术在处理速度远远超出了电子产品的范围,以上的太赫兹范围。中期和长期将追求的子系统将包括“片上”可重新配置电路,用于光学线性滤波、任意光学波形生成和检测以及超快模拟和数字计算。在短期内,该方案的核心活动将围绕四个相互关联的研究项目进行,涉及开发(a)能量优化的模拟光学信号处理器,(B)“绿色”无噪声波形放大方法,(c)“零能量”超快光学逻辑门,以及(d)用于超快时钟恢复、生成和处理的能量优化电路。** 这项研究的成果可以为更大规模地使用光子信号处理解决方案开辟道路,直接有助于克服目前几乎任何依赖ICT基础设施的应用或部门的电子瓶颈。该计划产生的新知识和在目标战略领域培训高素质人员将有助于提高加拿大在广泛的高科技部门的全球竞争力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Azaña, José其他文献

Azaña, José的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Azaña, José', 18)}}的其他基金

Photonic-Enabled Intelligent Ultrahigh-Bandwidth Time-Frequency Waveform Processing
光子智能超高带宽时频波形处理
  • 批准号:
    RGPIN-2020-06331
  • 财政年份:
    2022
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Photonic-Enabled Intelligent Ultrahigh-Bandwidth Time-Frequency Waveform Processing
光子智能超高带宽时频波形处理
  • 批准号:
    RGPIN-2020-06331
  • 财政年份:
    2021
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrahigh-speed dynamic waveform analysis and processing for next-generation cognitive ICT applications
适用于下一代认知 ICT 应用的超高速动态波形分析和处理
  • 批准号:
    RTI-2021-00621
  • 财政年份:
    2020
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Research Tools and Instruments
Photonic-Enabled Intelligent Ultrahigh-Bandwidth Time-Frequency Waveform Processing
光子智能超高带宽时频波形处理
  • 批准号:
    RGPIN-2020-06331
  • 财政年份:
    2020
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
PERSEUS: Programmable Elastic broadband information processors with controlled high precision frequency and time Reference SystEms Using all optical fiberS
PERSEUS:可编程弹性宽带信息处理器,具有受控高精度频率和时间参考系统,使用全光纤
  • 批准号:
    521494-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Strategic Projects - Group
Ultrafast Photonic Signal Processing
超快光子信号处理
  • 批准号:
    1000231388-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Canada Research Chairs
Efficient and practical quantum information processing enabled by advanced coherent control of on-chip optical frequency combs
通过片上光学频率梳的先进相干控制实现高效实用的量子信息处理
  • 批准号:
    506504-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Strategic Projects - Group
Method and System for Denoising Amplification of a Signal
用于信号去噪放大的方法和系统
  • 批准号:
    538537-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Idea to Innovation
Rethinking the fundamentals of photonic signal processing for "green" communications and computing
重新思考“绿色”通信和计算的光子信号处理的基础知识
  • 批准号:
    RGPIN-2014-04561
  • 财政年份:
    2018
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
State-of-the-art multi-functional RF signal analyzer for research on next-generation software-defined communication technologies and systems
最先进的多功能射频信号分析仪,用于研究下一代软件定义通信技术和系统
  • 批准号:
    RTI-2019-00562
  • 财政年份:
    2018
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Research Tools and Instruments

相似国自然基金

The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
  • 批准号:
    EP/X015351/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Research Grant
CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception
职业:探索自适应、协作和智能雷达传感和感知的基础知识
  • 批准号:
    2340029
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
CAREER: Fundamentals and Applications of Electrochemically Active Nanofluids for Energy Storage and Conversion
职业:用于能量存储和转换的电化学活性纳米流体的基础和应用
  • 批准号:
    2338147
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
  • 批准号:
    EP/X015327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Research Grant
Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
  • 批准号:
    EP/X015335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Research Grant
CAREER: Fundamentals of Conformational and Surface Water Dynamics in Supramolecular Nanofibers
职业:超分子纳米纤维的构象和表面水动力学基础
  • 批准号:
    2331196
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Fundamentals of Heterogeneous Nucleation with Application to the Optimization of Horizontal Ribbon Growth
异质成核的基础及其在水平带生长优化中的应用
  • 批准号:
    2317674
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Fundamentals and applications of tropical schemes
热带计划的基础和应用
  • 批准号:
    EP/X02752X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了