Can deep-learning algorithms identify genetic mutations or aberrant cellular signalling pathways from medical images?
深度学习算法能否从医学图像中识别基因突变或异常细胞信号通路?
基本信息
- 批准号:531111-2018
- 负责人:
- 金额:$ 8.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our project will determine if cancer-related genetic mutations found in tumours can be detected using medical
imaging. Tumours arise from a series of genetic errors, and these determine much of the behaviour of a tumour,
including its aggressiveness and its response to a treatment. In day-to-day medical imaging, once a patient has
undergone a medical scan, a specialist will look at the images and provide a diagnosis (e.g., liver cancer).
Sometimes, a biopsy (tumour sample) is acquired to better determine the subtype of cancer. Our project aims at
assisting physicians by providing them with additional information extracted using artificial intelligence and
advanced computer software. These are already known to be superior to humans in finding and quantifying
subtle image characteristics. We hypothesize that these image characteristics could be predictive of the cancer
subtype and its optimal treatment. First, this software has to be trained to recognize mutations. Because human
tumours vary a lot, it is difficult to differentiate visual characteristics caused by an individual inherent
variability from those caused by the mutation. To overcome this, we will use genetically engineered mouse
models - these will have specific mutations that will result in cancer but with limited variability between
animals. This will allow us to train a software to recognize tumours that have specific mutations. If successful,
our project will ultimately lead to software tools with capabilities similar to biopsies, and better and less
invasive management of cancer.
我们的项目将确定肿瘤中发现的与癌症相关的基因突变是否可以用医学方法检测出来。
显像肿瘤是由一系列遗传错误引起的,这些错误决定了肿瘤的大部分行为,
包括它的攻击性和它对治疗的反应。在日常医学成像中,一旦患者
在进行医学扫描时,专家将查看图像并提供诊断(例如,肝癌)。
有时,获取活检(肿瘤样本)以更好地确定癌症的亚型。我们的项目旨在
通过向医生提供使用人工智能提取的额外信息来帮助他们,
先进的计算机软件。这些已经被认为是上级人类在寻找和量化
微妙的图像特征。我们假设这些图像特征可以预测癌症
亚型及其最佳治疗。首先,这个软件必须经过训练才能识别突变。因为人类
肿瘤变化很大,很难区分由个体固有的视觉特征引起的
由突变引起的变异。为了克服这一点,我们将使用基因工程小鼠
模型-这些将有特定的突变,将导致癌症,但有限的变异之间
动物这将使我们能够训练一个软件来识别具有特定突变的肿瘤。如果成功,
我们的项目将最终导致软件工具的功能类似于活检,更好,更少,
癌症的侵入性管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lepage, Martin其他文献
Cortical thickness is associated with poor insight in first-episode psychosis
- DOI:
10.1016/j.jpsychires.2010.10.016 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:4.8
- 作者:
Buchy, Lisa;Ad-Dab'bagh, Yasser;Lepage, Martin - 通讯作者:
Lepage, Martin
Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis
- DOI:
10.1001/archpsyc.64.9.999 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:0
- 作者:
Achim, Amelie M.;Bertrand, Marie-Claude;Lepage, Martin - 通讯作者:
Lepage, Martin
Source retrieval is not properly differentiated from object retrieval in early schizophrenia: An fMRI study using virtual reality
- DOI:
10.1016/j.nicl.2014.08.006 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:4.2
- 作者:
Hawco, Colin;Buchy, Lisa;Lepage, Martin - 通讯作者:
Lepage, Martin
Neural markers of remission in first-episode schizophrenia: A volumetric neuroimaging study of the hippocampus and amygdala
- DOI:
10.1016/j.schres.2010.06.013 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:4.5
- 作者:
Bodnar, Michael;Malla, Ashok K.;Lepage, Martin - 通讯作者:
Lepage, Martin
Structural neural correlates of impairments in social cognition in first episode psychosis
- DOI:
10.1080/17470910701563491 - 发表时间:
2008-03-01 - 期刊:
- 影响因子:2
- 作者:
Bertrand, Marie-Claude;Achim, Amelie M.;Lepage, Martin - 通讯作者:
Lepage, Martin
Lepage, Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lepage, Martin', 18)}}的其他基金
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2022
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特征的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特征的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2020
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特质的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
Can deep-learning algorithms identify genetic mutations or aberrant cellular signalling pathways from medical images?
深度学习算法能否从医学图像中识别基因突变或异常细胞信号通路?
- 批准号:
531111-2018 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Collaborative Research and Development Grants
Quantitative MRI/PET bimodal pharmacokinetic modeling to improve diagnostic accuracy in medical imaging
定量 MRI/PET 双峰药代动力学模型可提高医学成像的诊断准确性
- 批准号:
RGPIN-2014-05386 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
Can deep-learning algorithms identify genetic mutations or aberrant cellular signalling pathways from medical images?
深度学习算法能否从医学图像中识别基因突变或异常细胞信号通路?
- 批准号:
531111-2018 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Collaborative Research and Development Grants
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特质的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特质的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2017
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Research Grant
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
- 批准号:
2327253 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Deep-UV Microscopy for Real-Time Adequacy Analysis of Bone Marrow Aspirates
用于骨髓抽吸物实时充分性分析的深紫外显微镜
- 批准号:
10761397 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Frontal-thalamo-cerebellar circuitry of attention deficit via imaging-genetic-environmental analyses
通过成像-遗传-环境分析观察注意力缺陷的额叶-丘脑-小脑回路
- 批准号:
10737357 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:














{{item.name}}会员




