Can deep-learning algorithms identify genetic mutations or aberrant cellular signalling pathways from medical images?
深度学习算法能否从医学图像中识别基因突变或异常细胞信号通路?
基本信息
- 批准号:531111-2018
- 负责人:
- 金额:$ 10.44万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our project will determine if cancer-related genetic mutations found in tumours can be detected using medical**imaging. Tumours arise from a series of genetic errors, and these determine much of the behaviour of a tumour,**including its aggressiveness and its response to a treatment. In day-to-day medical imaging, once a patient has**undergone a medical scan, a specialist will look at the images and provide a diagnosis (e.g., liver cancer).**Sometimes, a biopsy (tumour sample) is acquired to better determine the subtype of cancer. Our project aims at**assisting physicians by providing them with additional information extracted using artificial intelligence and**advanced computer software. These are already known to be superior to humans in finding and quantifying**subtle image characteristics. We hypothesize that these image characteristics could be predictive of the cancer**subtype and its optimal treatment. First, this software has to be trained to recognize mutations. Because human**tumours vary a lot, it is difficult to differentiate visual characteristics caused by an individual inherent**variability from those caused by the mutation. To overcome this, we will use genetically engineered mouse**models - these will have specific mutations that will result in cancer but with limited variability between**animals. This will allow us to train a software to recognize tumours that have specific mutations. If successful,**our project will ultimately lead to software tools with capabilities similar to biopsies, and better and less**invasive management of cancer.
我们的项目将确定是否可以使用医学成像检测肿瘤中发现的癌症相关基因突变。肿瘤由一系列遗传错误引起,这些错误决定了肿瘤的大部分行为,** 包括其侵袭性和对治疗的反应。在日常医学成像中,一旦患者接受了医学扫描,专家将查看图像并提供诊断(例如,肝癌)。**有时,获取活检(肿瘤样本)以更好地确定癌症的亚型。我们的项目旨在 ** 通过为医生提供使用人工智能和 ** 先进计算机软件提取的额外信息来协助他们。在发现和量化 ** 微妙的图像特征方面,这些已经被认为是优于人类的上级。我们假设这些图像特征可以预测癌症 ** 亚型及其最佳治疗。首先,这个软件必须经过训练才能识别突变。由于人类的 ** 肿瘤变化很大,很难区分由个体固有的 ** 变异性引起的视觉特征和由突变引起的视觉特征。为了克服这一点,我们将使用基因工程小鼠 ** 模型-这些模型将具有导致癌症的特定突变,但 ** 动物之间的变异性有限。这将使我们能够训练一个软件来识别具有特定突变的肿瘤。如果成功,** 我们的项目将最终导致软件工具具有类似于活组织检查的功能,以及更好和更少的癌症侵入性管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lepage, Martin其他文献
Cortical thickness is associated with poor insight in first-episode psychosis
- DOI:
10.1016/j.jpsychires.2010.10.016 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:4.8
- 作者:
Buchy, Lisa;Ad-Dab'bagh, Yasser;Lepage, Martin - 通讯作者:
Lepage, Martin
Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis
- DOI:
10.1001/archpsyc.64.9.999 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:0
- 作者:
Achim, Amelie M.;Bertrand, Marie-Claude;Lepage, Martin - 通讯作者:
Lepage, Martin
Neural markers of remission in first-episode schizophrenia: A volumetric neuroimaging study of the hippocampus and amygdala
- DOI:
10.1016/j.schres.2010.06.013 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:4.5
- 作者:
Bodnar, Michael;Malla, Ashok K.;Lepage, Martin - 通讯作者:
Lepage, Martin
Source retrieval is not properly differentiated from object retrieval in early schizophrenia: An fMRI study using virtual reality
- DOI:
10.1016/j.nicl.2014.08.006 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:4.2
- 作者:
Hawco, Colin;Buchy, Lisa;Lepage, Martin - 通讯作者:
Lepage, Martin
Functional magnetic resonance imaging study of external source memory and its relation to cognitive insight in non-clinical subjects
- DOI:
10.1111/pcn.12177 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:11.9
- 作者:
Buchy, Lisa;Hawco, Colin;Lepage, Martin - 通讯作者:
Lepage, Martin
Lepage, Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lepage, Martin', 18)}}的其他基金
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2022
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
Methods for ultrasensitive and quantitative multimodal molecular imaging of vascular inflammation
血管炎症超灵敏定量多模态分子成像方法
- 批准号:
RGPIN-2021-04046 - 财政年份:2021
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特征的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2021
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
Can deep-learning algorithms identify genetic mutations or aberrant cellular signalling pathways from medical images?
深度学习算法能否从医学图像中识别基因突变或异常细胞信号通路?
- 批准号:
531111-2018 - 财政年份:2020
- 资助金额:
$ 10.44万 - 项目类别:
Collaborative Research and Development Grants
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特征的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2020
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特质的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2019
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
Can deep-learning algorithms identify genetic mutations or aberrant cellular signalling pathways from medical images?
深度学习算法能否从医学图像中识别基因突变或异常细胞信号通路?
- 批准号:
531111-2018 - 财政年份:2019
- 资助金额:
$ 10.44万 - 项目类别:
Collaborative Research and Development Grants
Quantitative MRI/PET bimodal pharmacokinetic modeling to improve diagnostic accuracy in medical imaging
定量 MRI/PET 双峰药代动力学模型可提高医学成像的诊断准确性
- 批准号:
RGPIN-2014-05386 - 财政年份:2018
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特质的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2018
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
A trait oriented approach to the cognitive neuroscience of memory
记忆认知神经科学的面向特质的方法
- 批准号:
RGPIN-2015-04913 - 财政年份:2017
- 资助金额:
$ 10.44万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.44万 - 项目类别:
Research Grant
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
- 批准号:
2327253 - 财政年份:2024
- 资助金额:
$ 10.44万 - 项目类别:
Standard Grant
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 10.44万 - 项目类别:














{{item.name}}会员




