Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
基本信息
- 批准号:552712-2020
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning-based artificial intelligence has found applications in several important areas, including pattern and voice recognition, robotics and autonomous driving. In particular, combinatorial optimization is key to many intelligent applications, including traffic control and planning, efficient logistic planning and smart power grids. However, machine learning systems need to process a huge amount of data that requires significant resources in computing, memory storage and the communications between them. This issue presents a significant challenge for conventional computing architectures. In collaboration with Huawei Canada, this project will develop efficient computing systems for machine learning and artificial intelligence. To this end, we will pursue several new directions of research, including: A. Hardware-efficient neural networks using approximate and ultra-compact components; B. In- or near-memory processing for handling big data; and C. a new type of computer chips based on the principles of natural computing for efficient combinatorial optimization. This project is fully supported by Huawei Canada, who currently has over 800 employees with offices in multiple Canadian cities, through a joint research program at the U of A. Canada has been known as a stronghold for machine learning research; however, the related industry has been lagging behind international competitors. The outcomes of this project will help fill this gap and promote the Canadian industry to a stronger position in the competition. The project outcomes will lead to more environmentally friendly Information and Communication Technology (ICT) systems and help resolve key challenges in reducing the carbon footprint in the ICT industry. This research takes a truly innovative approach and provides excellent training opportunities for highly qualified personnel (HQP), who will be equipped with skills highly demanded by the high-tech sectors in Canadian industry. The expected outcomes of this project will, therefore, have a profound impact on the long-term growth of the economy and will be of significant industrial and economic importance to Canada.
基于机器学习的人工智能已经在几个重要领域得到应用,包括模式和语音识别、机器人和自动驾驶。特别是,组合优化是许多智能应用的关键,包括交通控制和规划,高效的物流规划和智能电网。然而,机器学习系统需要处理大量的数据,这需要大量的计算资源,内存存储和它们之间的通信。这个问题对传统计算架构提出了重大挑战。该项目将与华为加拿大公司合作,为机器学习和人工智能开发高效的计算系统。为此,我们将追求几个新的研究方向,包括:A。使用近似和超紧凑组件的硬件高效神经网络; B.用于处理大数据的内存或近内存处理;以及C.一种基于自然计算原理的新型计算机芯片,用于高效的组合优化。该项目得到了华为加拿大公司的全力支持,华为目前在加拿大多个城市设有办事处,拥有800多名员工,通过与美国大学的联合研究计划。加拿大一直被认为是机器学习研究的大本营;然而,相关行业一直落后于国际竞争对手。该项目的成果将有助于填补这一空白,并促进加拿大工业在竞争中处于更有利的地位。该项目的成果将导致更环保的信息和通信技术(ICT)系统,并帮助解决减少ICT行业碳足迹的关键挑战。这项研究采取了真正创新的方法,并为高素质人才(HQP)提供了极好的培训机会,他们将具备加拿大工业高科技部门高度要求的技能。因此,该项目的预期成果将对经济的长期增长产生深远影响,对加拿大的工业和经济具有重大意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han, Jie其他文献
An ultrasensitive analytical strategy for malachite green determination in fish samples based on bright orange-emissive carbon dots
- DOI:
10.1016/j.jfca.2021.104032 - 发表时间:
2021-06-12 - 期刊:
- 影响因子:4.3
- 作者:
Hu, Qin;Cui, Yikun;Han, Jie - 通讯作者:
Han, Jie
Gold Nanorods/Polypyrrole/m-SiO2 Core/Shell Hybrids as Drug Nanocarriers for Efficient Chemo-Photothermal Therapy
金纳米棒/聚吡咯/m-SiO2核/壳杂化物作为药物纳米载体用于高效化学光热治疗
- DOI:
10.1021/acs.langmuir.8b02667 - 发表时间:
2018-12-04 - 期刊:
- 影响因子:3.9
- 作者:
Wang, Juan;Han, Jie;Guo, Rong - 通讯作者:
Guo, Rong
Field evaluation of vegetation growth in geocell-reinforced unpaved shoulders
- DOI:
10.1016/j.geotexmem.2015.04.013 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:5.2
- 作者:
Guo, Jun;Han, Jie;Parsons, Robert L. - 通讯作者:
Parsons, Robert L.
Reversible Splenial Lesion Syndrome (RESLES) after Nitrous Oxide Abuse: A Case Report.
- DOI:
10.3390/brainsci12101284 - 发表时间:
2022-09-23 - 期刊:
- 影响因子:3.3
- 作者:
Tao, Yiming;Han, Jie;Jian, Xiangdong;Li, Yongsheng - 通讯作者:
Li, Yongsheng
miR-29a inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting DPP4
- DOI:
10.2147/ott.s201532 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:4
- 作者:
Wang, Yufei;Han, Jie;Zhang, Guochao - 通讯作者:
Zhang, Guochao
Han, Jie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han, Jie', 18)}}的其他基金
Approximate and Stochastic Computing Systems
近似和随机计算系统
- 批准号:
RGPIN-2020-06572 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
- 批准号:
552712-2020 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Approximate and Stochastic Computing Systems
近似和随机计算系统
- 批准号:
RGPIN-2020-06572 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Low-power and high-performance circuit modules for digital signal processing, wireless communications and deep learning
用于数字信号处理、无线通信和深度学习的低功耗高性能电路模块
- 批准号:
561173-2020 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Approximate and Stochastic Computing Systems
近似和随机计算系统
- 批准号:
RGPIN-2020-06572 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Low-power and high-performance circuit modules for digital signal processing, wireless communications and deep learning
用于数字信号处理、无线通信和深度学习的低功耗高性能电路模块
- 批准号:
561173-2020 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
- 批准号:
RGPIN-2015-06007 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
An Integrated Testing System for SKAA
SKAA 综合测试系统
- 批准号:
543453-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Engage Grants Program
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
- 批准号:
RGPIN-2015-06007 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
- 批准号:
RGPIN-2015-06007 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
普适计算环境下基于交互迁移与协作的智能人机交互研究
- 批准号:61003219
- 批准年份:2010
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
面向认知网络的自律计算模型及评价方法研究
- 批准号:60973027
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
普适环境下移动事务关键技术研究
- 批准号:60773089
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:面上项目
量子信息资源理论与应用研究
- 批准号:60573008
- 批准年份:2005
- 资助金额:22.0 万元
- 项目类别:面上项目
网格环境下的协同工作理论与关键技术研究
- 批准号:90412009
- 批准年份:2004
- 资助金额:30.0 万元
- 项目类别:重大研究计划
相似海外基金
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
- 批准号:
10749588 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
- 批准号:
10542443 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Efficient Storage Systems for Real-Time Edge Computing
用于实时边缘计算的高效存储系统
- 批准号:
RGPIN-2021-02662 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Efficient Entanglement in Quantum Computing Systems
EAGER:量子计算系统中的高效纠缠
- 批准号:
2231040 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
- 批准号:
552712-2020 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
- 批准号:
10350895 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
- 批准号:
552712-2020 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Efficient Storage Systems for Real-Time Edge Computing
用于实时边缘计算的高效存储系统
- 批准号:
DGECR-2021-00122 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Launch Supplement
Overcoming Challenges in Stochastic Computing to Enable Efficient Next-Generation Microelectronic Systems
克服随机计算的挑战,实现高效的下一代微电子系统
- 批准号:
RGPIN-2017-04205 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual