Approximate and Stochastic Computing Systems

近似和随机计算系统

基本信息

  • 批准号:
    RGPIN-2020-06572
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Current computer systems still consume a significant amount of power, regardless of the size of the system: given it a smart phone, a personal computer or a computer server. The reason is two-fold: 1) the tiny sizes of basic electronic devices (at a dimension of the nanometer scale) make them susceptible to variation and temporary errors due to manufacturing and environmental factors, so larger-than-necessary voltages and currents are required to ensure the operational reliability; and 2) computing applications have increasingly become complex, such as multimedia, that involve a significant number of arithmetic operations. As a result, energy efficiency has become a paramount concern for current computer systems. The conflict between reliability and energy efficiency seems to be inevitable and presents significant design challenges. On the other hand, however, many computing tasks show a common characteristic of being imprecision-tolerant or error-resilient, particularly during the intermediate computing process. It is an especially important feature in many emerging applications such as image/video processing, pattern recognition and machine learning. The objective of this research program is to develop a new class of computing systems that employs approximate computing (AC) and stochastic computing (SC) techniques for energy-efficient and high-performance processing. AC leverages the error resilience in many applications and employs deliberate and deterministic designs to deliver imprecise but good-enough results, whereas SC uses simplistic hardware with random binary bit streams for producing meaningful statistics in the computed result. Considerable effort has been devoted to the development of basic circuit elements for AC and to the design and implementation of basic building blocks for SC. A challenge, however, is to integrate various circuit components into an AC and/or SC system for low-power and high-performance operation. To address this challenge, the effective integration of various AC and SC circuit components into a larger system will be the primary focus of this research. The design will be aimed at conventional digital signal processing in embedded and mobile systems, as well as emerging brain-inspired computing systems that explore the organization and functions of neurons and connecting synapses at different levels of hierarchy and abstraction. Two essential classes of applications will be considered: 1) multimedia, including image, audio and video processing; and 2) image and voice recognition using effective machine-learning models, including neural networks. Addressing a fundamentally challenging issue, i.e., energy efficiency in computer systems, this research program will produce useful results for the electronics and information industry. It will also provide valuable training opportunities for highly qualified personnel with skills demanded by and crucial to the long-term growth of the Canadian economy.
目前的计算机系统仍然消耗大量的电力,无论系统的大小是:假设它是一部智能手机、一台个人计算机或一台计算机服务器。原因有两个:1)基本电子设备的微小尺寸(纳米级)使其容易因制造和环境因素而发生变化和暂时性错误,因此需要比必要的电压和电流更大的电压和电流以确保操作可靠性;2)计算应用程序越来越复杂,例如涉及大量算术运算的多媒体。因此,能源效率已成为当前计算机系统最关心的问题。可靠性和能效之间的冲突似乎是不可避免的,并带来了重大的设计挑战。然而,另一方面,许多计算任务表现出一个共同的特征,即不精确容忍或错误恢复,特别是在中间计算过程中。在图像/视频处理、模式识别和机器学习等许多新兴应用中,它是一个特别重要的特征。这项研究计划的目标是开发一种新的计算系统,它使用近似计算(AC)和随机计算(SC)技术来实现节能和高性能的处理。AC利用许多应用中的容错能力,并采用深思熟虑和确定性的设计来提供不精确但足够好的结果,而SC使用带有随机二进制比特流的简化硬件来在计算结果中产生有意义的统计数据。已经投入了相当大的努力来开发AC的基本电路元件以及SC的基本构建块的设计和实现。然而,一个挑战是将各种电路组件集成到AC和/或SC系统中以实现低功率和高性能操作。为了应对这一挑战,将各种交流和SC电路元件有效地集成到一个更大的系统中将是本研究的主要重点。该设计将针对嵌入式和移动系统中的传统数字信号处理,以及新兴的受大脑启发的计算系统,这些系统探索神经元的组织和功能,并在不同的层次和抽象级别连接突触。将考虑两类基本的应用:1)多媒体,包括图像、音频和视频处理;2)使用有效的机器学习模型,包括神经网络的图像和语音识别。这项研究计划将从根本上解决一个具有挑战性的问题,即计算机系统的能源效率,这一研究计划将为电子和信息行业带来有用的结果。它还将为具有加拿大经济长期增长所需和至关重要的技能的高素质人员提供宝贵的培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Han, Jie其他文献

Design and Preparation of Polyimide/TiO(2)@MoS(2) Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance.
  • DOI:
    10.3390/polym14163230
  • 发表时间:
    2022-08-09
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Chang, Zhenjun;Sun, Xiaoling;Liao, Zhengzheng;Liu, Qiang;Han, Jie
  • 通讯作者:
    Han, Jie
Interaction between Her2 and Beclin-1 Proteins Underlies a New Mechanism of Reciprocal Regulation
  • DOI:
    10.1074/jbc.m113.461350
  • 发表时间:
    2013-07-12
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Han, Jie;Hou, Wen;Rabinowich, Hannah
  • 通讯作者:
    Rabinowich, Hannah
It is time to acknowledge coronavirus transmission via frozen and chilled foods: Undeniable evidence from China and lessons for the world.
  • DOI:
    10.1016/j.scitotenv.2023.161388
  • 发表时间:
    2023-04-10
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Dai, Han;Tang, Hao;Sun, Wen;Deng, Shihai;Han, Jie
  • 通讯作者:
    Han, Jie
Gold Nanorods/Polypyrrole/m-SiO2 Core/Shell Hybrids as Drug Nanocarriers for Efficient Chemo-Photothermal Therapy
金纳米棒/聚吡咯/m-SiO2核/壳杂化物作为药物纳米载体用于高效化学光热治疗
  • DOI:
    10.1021/acs.langmuir.8b02667
  • 发表时间:
    2018-12-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wang, Juan;Han, Jie;Guo, Rong
  • 通讯作者:
    Guo, Rong
miR-29a inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting DPP4
  • DOI:
    10.2147/ott.s201532
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wang, Yufei;Han, Jie;Zhang, Guochao
  • 通讯作者:
    Zhang, Guochao

Han, Jie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Han, Jie', 18)}}的其他基金

Approximate and Stochastic Computing Systems
近似和随机计算系统
  • 批准号:
    RGPIN-2020-06572
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
  • 批准号:
    552712-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Low-power and high-performance circuit modules for digital signal processing, wireless communications and deep learning
用于数字信号处理、无线通信和深度学习的低功耗高性能电路模块
  • 批准号:
    561173-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Approximate and Stochastic Computing Systems
近似和随机计算系统
  • 批准号:
    RGPIN-2020-06572
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
  • 批准号:
    552712-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Low-power and high-performance circuit modules for digital signal processing, wireless communications and deep learning
用于数字信号处理、无线通信和深度学习的低功耗高性能电路模块
  • 批准号:
    561173-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
  • 批准号:
    RGPIN-2015-06007
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
An Integrated Testing System for SKAA
SKAA 综合测试系统
  • 批准号:
    543453-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
  • 批准号:
    RGPIN-2015-06007
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
  • 批准号:
    RGPIN-2015-06007
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2400463
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Revolution of Programmability in Non-von Neumann Platforms by Employing Tandem CGRA + Stochastic Computing
通过采用串联 CGRA 随机计算实现非冯·诺依曼平台的可编程性革命
  • 批准号:
    22H00515
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Lyapunov Drift Methods for Stochastic Recursions: Applications in Cloud Computing and Reinforcement Learning
职业:随机递归的李亚普诺夫漂移方法:云计算和强化学习中的应用
  • 批准号:
    2144316
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Approximate and Stochastic Computing Systems
近似和随机计算系统
  • 批准号:
    RGPIN-2020-06572
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Overcoming Challenges in Stochastic Computing to Enable Efficient Next-Generation Microelectronic Systems
克服随机计算的挑战,实现高效的下一代微电子系统
  • 批准号:
    RGPIN-2017-04205
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2106562
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: General-Purpose Stochastic Computing for Ultra-Low-Power Hardware Devices
职业:超低功耗硬件设备的通用随机计算
  • 批准号:
    2045985
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
EAGER: Transforming Optical Neural Network Accelerators with Stochastic Computing
EAGER:利用随机计算改造光神经网络加速器
  • 批准号:
    2139167
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
  • 批准号:
    1953961
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Overcoming Challenges in Stochastic Computing to Enable Efficient Next-Generation Microelectronic Systems
克服随机计算的挑战,实现高效的下一代微电子系统
  • 批准号:
    RGPIN-2017-04205
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了