Computational framework for fast uncertainty quantification and decision analytics

用于快速不确定性量化和决策分析的计算框架

基本信息

  • 批准号:
    557220-2020
  • 负责人:
  • 金额:
    $ 9.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

We have developed a novel deep Bayesian learning architecture coupled to a Bayesian analytics engine which together form a powerful and highly flexible computational framework for decision support in complex engineering applications. We call our system the Deep Bayesian Analytics Engine (DBAE). At the fundamental level, our invention allows the discovery of actionable relationships between decision variables and performance outcomes by overcoming the curse of dimensionality in challenging, high-dimensional decision making problems. A distinguishing feature of our technology is its ability to infer the intrinsic/effective dimensionality of the problem via a statistically rigorous nonlinear decomposition method that facilitates the exploitation of the underlying problem structure for accelerated analytics computations. Specifically, our framework enables dramatic speedups in tasks that routinely arise in the computation of decision analytics such as the evaluation of high-dimensional integrals to estimate predictive statistics, search/optimization in high-dimensional spaces, decision robustness calculations, statistical calibration of computer models using data from physical experiments and onboard sensors, and the solution of inverse problems. We have evaluated a prototype software tool on challenging benchmarks and industrial-scale problems from the aircraft engine design sector. In the proposed project, we will enhance our prototype software implementation in order to begin field testing with potential partners and end users. Work will focus on scaling and accelerating our core algorithms in conjunction with the development of an improved user interface with immersive visualization capabilities. To broaden our potential market, additional testing will be carried out on novel applications in the environmental sciences and online system health monitoring sectors where there is significant demand for such advanced statistical tools.
我们开发了一种新的深度贝叶斯学习体系结构,与贝叶斯分析引擎相结合,共同形成了一个强大且高度灵活的计算框架,用于复杂工程应用中的决策支持。我们称我们的系统为深度贝叶斯分析引擎(DBAE)。在基本层面上,我们的发明通过在具有挑战性的高维决策问题中克服维度诅咒,允许发现决策变量和绩效结果之间的可操作关系。我们技术的一个显著特点是,它能够通过统计上严格的非线性分解方法来推断问题的内在/有效维度,该方法有助于开发用于加速分析计算的潜在问题结构。具体地说,我们的框架能够显著加速决策分析计算中经常出现的任务,例如评估高维积分以估计预测统计、在高维空间中搜索/优化、决策稳健性计算、使用物理实验和机载传感器的数据对计算机模型进行统计校准,以及逆问题的解决。 我们已经评估了一个原型软件工具,用于挑战基准和来自飞机发动机设计部门的工业规模问题。在拟议的项目中,我们将加强我们的原型软件实施,以便开始与潜在的合作伙伴和最终用户进行实地测试。我们的工作重点将是扩展和加速我们的核心算法,同时开发具有沉浸式可视化能力的改进用户界面。为了扩大我们的潜在市场,将对环境科学和在线系统健康监测部门的新应用进行额外的测试,这些部门对这种先进的统计工具有很大的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nair, PrasanthBalagopal其他文献

Nair, PrasanthBalagopal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nair, PrasanthBalagopal', 18)}}的其他基金

Robust Structural Topology Optimization
稳健的结构拓扑优化
  • 批准号:
    543593-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Robust Structural Topology Optimization
稳健的结构拓扑优化
  • 批准号:
    543593-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven decision analytics framework for complex engineering design applications
适用于复杂工程设计应用的数据驱动决策分析框架
  • 批准号:
    518139-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven decision analytics framework for complex engineering design applications
适用于复杂工程设计应用的数据驱动决策分析框架
  • 批准号:
    518139-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    493044-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    493044-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Structural topology optimization under uncertain loading
不确定载荷下的结构拓扑优化
  • 批准号:
    499387-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Engage Grants Program
Computational strategies for constructing emulators of complex high-dimensional engineering systems
构建复杂高维工程系统模拟器的计算策略
  • 批准号:
    402090-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data driven computational frameworks for robust design optimization of complex engineering systems
数据驱动的计算框架,用于复杂工程系统的稳健设计优化
  • 批准号:
    453359-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Computational strategies for constructing emulators of complex high-dimensional engineering systems
构建复杂高维工程系统模拟器的计算策略
  • 批准号:
    402090-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Rotating Anode Systems for Fast Electrorefining of Copper: Towards a Stronger Resource-Recycling Framework
开发用于铜快速电解精炼的旋转阳极系统:建立更强大的资源回收框架
  • 批准号:
    23K17834
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
  • 批准号:
    10728800
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
GARDE: Scalable Clinical Decision Support for Individualized Cancer Risk Management
GARDE:个性化癌症风险管理的可扩展临床决策支持
  • 批准号:
    10741231
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
Toward a Fast and Secure Blockchain Framework for Smart Contracts
建立快速、安全的智能合约区块链框架
  • 批准号:
    RGPIN-2020-05926
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Toward a Fast and Secure Blockchain Framework for Smart Contracts
建立快速、安全的智能合约区块链框架
  • 批准号:
    RGPIN-2020-05926
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Learning Framework for Fast Quantitative Knee Joint Mapping
用于快速定量膝关节绘图的数据驱动学习框架
  • 批准号:
    10430275
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10654594
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
Improvements to the LinkML framework to support the Phenomics First open science resource
改进 LinkML 框架以支持 Phenomics First 开放科学资源
  • 批准号:
    10608894
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
Data-Driven Learning Framework for Fast Quantitative Knee Joint Mapping
用于快速定量膝关节绘图的数据驱动学习框架
  • 批准号:
    10296235
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了