Data driven computational frameworks for robust design optimization of complex engineering systems

数据驱动的计算框架,用于复杂工程系统的稳健设计优化

基本信息

  • 批准号:
    453359-2013
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Simulation-based predictive tools have revolutionized engineering design practice, allowing designers to improve system performance and safety before physical prototypes are built and tested. However, a number of computational challenges remain to be addressed in order to apply high-fidelity simulation tools to design complex engineering systems. The proposed research program will deliver efficient computational methods and a software framework that will enable engineers to optimize the performance and robustness of complex engineering systems on a limited computational budget. The focus of this work will be on the development of novel greedy function approximation strategies for constructing computationally efficient surrogate models of high-fidelity simulation models. This work will also include the formulation of linear and nonlinear dimensionality reduction strategies that will enable the application of greedy surrogate modeling algorithms to high-dimensional, large-scale simulation databases typically encountered in engineering practice. Data-driven optimization frameworks for robust design will be developed leveraging the algorithms developed for surrogate modeling. The computational methods developed during this research project will be tested and validated on aeroengine design and aerodynamic shape optimization problems. The key deliverables from this research project will be novel greedy algorithms for constructing surrogate models, surrogate-assisted optimization strategies for robust design, and a general-purpose software toolkit that will enable significant reductions in the design cost for complex real-world engineering systems.
基于仿真的预测工具彻底改变了工程设计实践,使设计人员能够在构建和测试物理原型之前提高系统性能和安全性。然而,为了应用高保真仿真工具来设计复杂的工程系统,一些计算挑战仍有待解决。拟议的研究计划将提供有效的计算方法和软件框架,使工程师能够在有限的计算预算下优化复杂工程系统的性能和鲁棒性。这项工作的重点将是开发新的贪婪函数逼近策略,用于构建计算效率高的高保真仿真模型的代理模型。这项工作还将包括线性和非线性降维策略的制定,这将使贪婪代理建模算法的应用程序,高维,大规模的仿真数据库通常会遇到在工程实践中。将利用为替代建模开发的算法开发用于稳健设计的数据驱动优化框架。在本研究项目中开发的计算方法将在航空发动机设计和气动外形优化问题上进行测试和验证。该研究项目的关键成果将是用于构建代理模型的新型贪婪算法,用于鲁棒设计的代理辅助优化策略,以及一个通用软件工具包,该工具包将显着降低复杂现实世界工程系统的设计成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nair, PrasanthBalagopal其他文献

Nair, PrasanthBalagopal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nair, PrasanthBalagopal', 18)}}的其他基金

Robust Structural Topology Optimization
稳健的结构拓扑优化
  • 批准号:
    543593-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Collaborative Research and Development Grants
Computational framework for fast uncertainty quantification and decision analytics
用于快速不确定性量化和决策分析的计算框架
  • 批准号:
    557220-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Idea to Innovation
Robust Structural Topology Optimization
稳健的结构拓扑优化
  • 批准号:
    543593-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven decision analytics framework for complex engineering design applications
适用于复杂工程设计应用的数据驱动决策分析框架
  • 批准号:
    518139-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven decision analytics framework for complex engineering design applications
适用于复杂工程设计应用的数据驱动决策分析框架
  • 批准号:
    518139-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Collaborative Research and Development Grants
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    493044-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    493044-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Structural topology optimization under uncertain loading
不确定载荷下的结构拓扑优化
  • 批准号:
    499387-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Engage Grants Program
Computational strategies for constructing emulators of complex high-dimensional engineering systems
构建复杂高维工程系统模拟器的计算策略
  • 批准号:
    402090-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Discovery Grants Program - Individual
Data driven computational frameworks for robust design optimization of complex engineering systems
数据驱动的计算框架,用于复杂工程系统的稳健设计优化
  • 批准号:
    453359-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Studentship
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
  • 批准号:
    10751099
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
CAS: Computational Data-Driven Metal-Free Catalysts Discovery for Small Molecule Activation and Conversion
CAS:计算数据驱动的无金属催化剂发现,用于小分子活化和转化
  • 批准号:
    2247481
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
  • 批准号:
    2243981
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Data-driven Computational and Machine Learning Assessment of Structure-Toxicity Relationship of Micro/NanoPlastics
RII Track-4:NSF:微/纳米塑料结构-毒性关系的数据驱动计算和机器学习评估
  • 批准号:
    2229755
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
  • 批准号:
    10714763
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
Workshop: Data Driven and Computational Modeling of Materials Across Scales; Los Angeles, California; 10-12 May 2023
研讨会:跨尺度材料的数据驱动和计算建模;
  • 批准号:
    2325413
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
  • 批准号:
    2236796
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Continuing Grant
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
  • 批准号:
    10826595
  • 财政年份:
    2023
  • 资助金额:
    $ 4.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了